(本小題滿分13分)已知函數(shù)
(I)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

(1)f(x)的最小正周期T==π.
f(x)的單調(diào)增區(qū)間為
(2)見解析

解析試題分析:(1)利用三角函數(shù)的恒等變換化簡f(x)的解析式為 ,由此求得函數(shù)的最小正周期,及單調(diào)增區(qū)間
(2)平移有兩種思路:一是先平移再伸縮,二是先伸縮再平移.
(1)f(x)=
=
=sin(2x+.
∴f(x)的最小正周期T==π.
由題意得

∴f(x)的單調(diào)增區(qū)間為
(2)方法一:
先把y="sin" 2x圖象上所有的點向左平移個單位長度,得到y(tǒng)=sin(2x+)的圖象,再把所得圖象上所有的點向上平移個單位年度,就得到y(tǒng)=sin(2x+)+的圖象.
方法二:
把y="sin" 2x圖象上所有的點按向量a=(-)平移,就得到y(tǒng)=sin(2x+)+的圖象.
考點:三角函數(shù)中的恒等變換應(yīng)用;三角函數(shù)的周期性及其求法;復合三角函數(shù)的單調(diào)性.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性以及求法,求三角函數(shù)的單調(diào)區(qū)間,圖像變換等.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(10分)設(shè)向量,函數(shù).
(Ⅰ)求函數(shù)的最大值與最小正周期;
(Ⅱ)求使不等式成立的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD,在點A處有一個可轉(zhuǎn)動的探照燈,其照射角始終為(其中點P,Q分別在邊BC,CD上),設(shè)

(Ⅰ)用t表示出PQ的長度,并探求的周長l是否為定值;
(Ⅱ)問探照燈照射在正方形ABCD內(nèi)部區(qū)域陰影部分的面積S最大為多少(平方百米)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知向量,設(shè)函數(shù)的圖象關(guān)于直線對稱,其中,為常數(shù),且.
(1)求函數(shù)的最小正周期;
(2)若的圖象經(jīng)過點,求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知,設(shè)函數(shù)  

2,4,6

 
(1)求的最小正周期及單調(diào)遞增區(qū)間;

(2)當時,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)上是增函數(shù),,
(1)當時,求的值;
(2)求的最值以及取最值時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在已知函數(shù)(其中)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最低點為
(1).求的解析式   (2).當時,求的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共13分)已知函數(shù),求時函數(shù)的最值。

查看答案和解析>>

同步練習冊答案