如圖,橢圓C:x2+3y2=3b2(b>0).
(1)求橢圓C的離心率;
(2)若b=1,A,B是橢圓C上兩點(diǎn),且|AB|=
3
,求△AOB面積的最大值.
分析:(1)橢圓方程化為標(biāo)準(zhǔn)方程,即可求橢圓C的離心率;
(2)分類討論,設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,表示出面積,利用配方法可求最值,從而可得結(jié)論.
解答:解:(1)由x2+3y2=3b2
x2
3b2
+
y2
b2
=1
,
所以e=
c
a
=
3b2-b2
3b2
=
6
3
;
(2)設(shè)A(x1,y1),B(x2,y2),△ABO的面積為S.
如果AB⊥x軸,由對稱性不妨記A的坐標(biāo)為(
3
2
,
3
2
),此時S=
1
2
3
2
3
=
3
4
;
如果AB不垂直于x軸,設(shè)直線AB的方程為y=kx+m,代入橢圓方程,可得x2+3(kx+m) 2=3,
即(1+3k2)x2+6kmx+3m2-3=0,又△=36k2m2-4(1+3k2) (3m2-3)>0,
所以x1+x2=-
6km
1+3k2
,x1x2=
3m2-3
1+3k2

所以(x1-x22=(x1+x22-4x1x2=
12(1+3k2-m2)
(1+3k2)2
,①
由|AB|=
1+k2
•|x1-x2|
及|AB|=
3
得(x1-x22=
3
1+k2
,②
結(jié)合①,②得m2=(1+3k2)-
(1+3k2)2
4(1+k2)

又原點(diǎn)O到直線AB的距離為
|m|
1+k2
,
所以S=
1
2
|m|
1+k2
3

因此S2=
3
4
m2
1+k2
=
3
16
1+3k2
1+k2
-2)2+
3
4
3
4
,
故S≤
3
2
,當(dāng)且僅當(dāng)
1+3k2
1+k2
=2,即k=±1時上式取等號.
3
2
3
4
,故Smax=
3
2
點(diǎn)評:本題考查橢圓的幾何性質(zhì),考查三角形面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)如圖,橢圓C:x2+
y2
m
=1  (0<m<1)
的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對稱.
(Ⅰ)若點(diǎn)P的坐標(biāo)為(
9
5
,
4
3
5
)
,求m的值;
(Ⅱ)若橢圓C上存在點(diǎn)M,使得OP⊥OM,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F2與拋物線y2=8x的焦點(diǎn)重合,過F2作與x軸垂直的直線l與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且
|CD|
|ST|
=2
6

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點(diǎn)),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省2012屆高三調(diào)研考試數(shù)學(xué)理科試題 題型:044

如圖,橢圓C:x2+3y2=3b2(b>0).

(Ⅰ)求橢圓C的離心率;

(Ⅱ)若b=1,AB是橢圓C上兩點(diǎn),且|AB|=,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省長郡中學(xué)2012屆高三第五次月考數(shù)學(xué)理科試題 題型:044

如圖,橢圓C:x2+3y2=3b2(b>0).

(1)求橢圓C的離心率;

(2)若b=1,A,B是橢圓C上的兩點(diǎn),且|AB|=,求△AOB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案