16.當$-\frac{π}{2}≤x≤π$時,函數(shù)$f(x)=sinx+\sqrt{3}cosx$的( 。
A.最大值是1,最小值是$-\sqrt{3}$B.最大值是1,最小值是-1
C.最大值是2,最小值是$-\sqrt{3}$D.最大值是2,最小值是-1

分析 運用兩角和的正弦公式,結(jié)合正弦函數(shù)的圖象和性質(zhì),即可得到最值.

解答 解:函數(shù)$f(x)=sinx+\sqrt{3}cosx$=2($\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx)
=2sin(x+$\frac{π}{3}$).
由$-\frac{π}{2}≤x≤π$,可得-$\frac{π}{6}$≤x+$\frac{π}{3}$≤$\frac{4π}{3}$,
則-$\frac{\sqrt{3}}{2}$≤sin(x+$\frac{π}{3}$)≤1,
即有-$\sqrt{3}$≤2sin(x+$\frac{π}{3}$)≤2.
則函數(shù)的最大值為2,最小值為-$\sqrt{3}$.
故選:C.

點評 本題考查兩角和的正弦公式,考查三角函數(shù)的圖象和性質(zhì),考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式x2-9>0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等差數(shù)列{an}滿足a2=3,a3+a4=12,則數(shù)列{an}的通項公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)關(guān)于x的方程x2-2(m-1)x+m-1=0的兩個根為α,β,且0<α<1<β<2,則實數(shù)m的取值范圍是2<m<$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算下列各式的值:
(Ⅰ)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{16^{0.75}}+{0.01^{\frac{1}{2}}}$;
(Ⅱ)已知log73=a,log74=b,求log748.(其值用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)計算:[(-2)10]${\;}^{\frac{1}{2}}$+(-1)0+2${\;}^{-2+lo{g}_{2}3}$+$\root{3}{(-\frac{3}{4})^{3}}$;
(2)已知角α終邊上一點P(-4a,3a),a≠0,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=1+cosx的導(dǎo)數(shù)是f′(x)=-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{4{x}^{2}-7}{2-x}$,x∈[0,1].
(1)求f(x)的單調(diào)區(qū)間和值域;
(2)設(shè)函數(shù)g(x)=x-4-alnx,x∈($\frac{1}{e}$,e3),a∈R,若對于任意x0∈[0,1],總存在x1,x2∈($\frac{1}{e}$,e3),x1≠x2,使得g(x1)=g(x2)=f(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=ax-2016+2016(a>0且a≠1)的圖象恒過定點(2016,2017).

查看答案和解析>>

同步練習冊答案