(本小題滿分14分)已知函數(shù)=,.

(1)求函數(shù)在區(qū)間上的值域;

(2)是否存在實數(shù),對任意給定的,在區(qū)間上都存在兩個不同的,使得成立.若存在,求出的取值范圍;若不存在,請說明理由.

(3)給出如下定義:對于函數(shù)圖象上任意不同的兩點,如果對于函數(shù)圖象上的點(其中總能使得成立,則稱函數(shù)具備性質“”,試判斷函數(shù)是不是具備性質“”,并說明理由.

 

【答案】

(1)值域為 .(2)滿足條件的不存在. (3)函數(shù)不具備性質“”.

【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。

(1)因為,然后分析導數(shù)的正負,然后判定單調(diào)性得到值域。

(2)令,則由(1)可得,原問題等價于:對任意的上總有兩個不同的實根,故不可能是單調(diào)函數(shù),對于參數(shù)a討論得到結論。

(3)結合導數(shù)的幾何意義得到結論。

(1),當時,時, 

  在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,

   的值域為 .          ………………………….3分

(2)令,則由(1)可得,原問題等價于:對任意的上總有兩個不同的實根,故不可能是單調(diào)函數(shù)  ……5分

   

時, , 在區(qū)間上遞減,不合題意 ;

時, ,在區(qū)間上單調(diào)遞增,不合題意;

時, ,在區(qū)間上單調(diào)遞減,不合題意;

時, 在區(qū)間上單調(diào)遞減; 在區(qū)間上單遞增,由上可得,此時必有的最小值小于等于0且的最大值大于等于1, 而由可得,則.

綜上,滿足條件的不存在.……………………………………………8分

(3)設函數(shù)具備性質“”,即在點處地切線斜率等于,不妨設,則,而在點處的切線斜率為,故有……..10分

,令,則上式化為

,則由可得上單調(diào)遞增,故,即方程無解,所以函數(shù)不具備性質“”.……..14分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設AB是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案