心理學(xué)家研究發(fā)現(xiàn):一般情況下,學(xué)生的注意力隨著老師講課時(shí)間的變化而變化.講課開始時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力y隨時(shí)間t的變化規(guī)律有如下關(guān)系式:

y=

(1)講課開始后第5分鐘時(shí)與講課開始后第25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?

(2)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?

(3)一道數(shù)學(xué)綜合題,需要講解24分鐘,為了效果較好,要求學(xué)生的注意力最低達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?如果不能講解完,說明理由;如果能夠講解完,請說明老師應(yīng)該在哪個(gè)時(shí)間段內(nèi)講解.

答案:
解析:

  解:(1)講課開始后第5分鐘時(shí),t=5,注意力y=-52+24×5+100=195,講課開始后第25分鐘時(shí),t=25,注意力y=-7×25+380=205,所以講課開始后第25分鐘時(shí)學(xué)生的注意力更集中.

  (2)由于函數(shù)y=-t2+24t+100的對稱軸為直線t=12,所以當(dāng)0<t≤10時(shí)單調(diào)遞增,所以當(dāng)t=10時(shí)y取得最大值240,又當(dāng)10<t≤20時(shí)y=240,又由于函數(shù)y=-7t+380在20<t≤45時(shí)單調(diào)遞減,所以當(dāng)t=20時(shí)y取得最大值240,因此講課開始后10分鐘,學(xué)生的注意力最集中,能持續(xù)20-10=10分鐘.

  (3)由題意,學(xué)生的注意力y關(guān)于時(shí)間t的函數(shù)圖象如下圖所示:

  由于講解這道數(shù)學(xué)綜合題需要學(xué)生的注意力最低達(dá)到180,所以圖象中在直線y=180上方(或上)的部分符合要求,由-t2+24t+100=180,得t=4或t=20(舍去),由-7t+380=180,得t≈28.57,因?yàn)?8.57-4>24,所以老師能在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目,具體安排應(yīng)該在講課開始后第4分鐘到第28.57分鐘內(nèi)講解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于教師引入概念和描述問題所用的時(shí)間.講座開始時(shí),學(xué)生的興趣激增;中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生的接受能力,x表示引入概念和描述問題所用的時(shí)間(單位:分鐘),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多長時(shí)間?
(2)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘,教師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這道難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量為1,則x天后的存留量y1=
4
x+4
;若在t(t>0)天時(shí)進(jìn)行第一次復(fù)習(xí),則此時(shí)這似乎存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)的時(shí)間忽略不計(jì)),其后存留量y2隨時(shí)間變化的曲線恰好為直線的一部分,其斜率為
a
(t+4)2
(a<0)
,存留量隨時(shí)間變化的曲線如圖所示.當(dāng)進(jìn)行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時(shí),則稱此時(shí)刻為“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”
(1)若a=-1,t=5,求“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”;
(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期質(zhì)量檢測數(shù)學(xué)試卷 題型:解答題

心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量記為1,則天后的存留量;若在天時(shí)進(jìn)行第一次復(fù)習(xí),則此時(shí)知識存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)時(shí)間忽略不計(jì)),其后存儲量隨時(shí)間變化的曲線恰為直線的一部分,其斜率為存留量隨時(shí)間變化的曲線如圖所示.當(dāng)進(jìn)行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時(shí),則稱此時(shí)此刻為“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”.

(1)若,求“二次最佳時(shí)機(jī)點(diǎn)”;

(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”,求的取值范圍.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇北四市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

心理學(xué)家研究某位學(xué)生的學(xué)習(xí)情況發(fā)現(xiàn):若這位學(xué)生剛學(xué)完的知識存留量為1,則x 天后的存留量;若在t(t>0)天時(shí)進(jìn)行第一次復(fù)習(xí),則此時(shí)這似乎存留量比未復(fù)習(xí)情況下增加一倍(復(fù)習(xí)的時(shí)間忽略不計(jì)),其后存留量y2隨時(shí)間變化的曲線恰好為直線的一部分,其斜率為,存留量隨時(shí)間變化的曲線如圖所示.當(dāng)進(jìn)行第一次復(fù)習(xí)后的存留量與不復(fù)習(xí)的存留量相差最大時(shí),則稱此時(shí)刻為“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”
(1)若a=-1,t=5,求“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”;
(2)若出現(xiàn)了“二次復(fù)習(xí)最佳時(shí)機(jī)點(diǎn)”,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案