已知在中,,且,點(diǎn)滿足,則等于          .

 

【答案】

 

【解析】

試題分析:因?yàn)樵?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013050908425783421002/SYS201305090843226311622743_DA.files/image002.png">中,,且,點(diǎn)滿足,所以M,N是等腰直角三角形ABC斜邊BC的三等分點(diǎn)。, ,=()·()===4.

考點(diǎn):本題主要考查等腰直角三角形的幾何特征,平面向量的線性運(yùn)算、數(shù)量積。

點(diǎn)評:典型題,本題綜合考查等腰直角三角形的幾何特征,平面向量的線性運(yùn)算、數(shù)量積。在運(yùn)算中,往往需要將向量的運(yùn)算,轉(zhuǎn)化成向量模的運(yùn)算。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)已知函數(shù)f(x)=
3
sin
ωx+φ
2
cos
ωx+φ
2
+sin2
ωx+φ
2
(ω>0,0<φ<
π
2
)
.其圖象的兩個相鄰對稱中心的距離為
π
2
,且過點(diǎn)(
π
3
,1)

(I)函數(shù)f(x)的達(dá)式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對邊,a=
5
,S△ABC=2
5
,角C為銳角.且滿f(
C
2
-
π
12
)=
7
6
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濰坊市高三3月第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

已知函數(shù).其圖象的兩個相鄰對稱中心的距離為,且過點(diǎn)

(I) 函數(shù)的達(dá)式;

(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對邊,,,角C為銳角。且滿,求c的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省英文學(xué)校高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題

.(本小題滿分14分)

                      已知橢圓、拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲

線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:

3

2

4

0

4

                      (Ⅰ)求的標(biāo)準(zhǔn)方程;

                      (Ⅱ)請問是否存在直線滿足條件:①過的焦點(diǎn);②與交不同兩點(diǎn)且滿

?若存在,求出直線的方程;若不存在,說明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省濰坊市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù).其圖象的兩個相鄰對稱中心的距離為,且過點(diǎn)
(I)函數(shù)f(x)的達(dá)式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對邊,,,角C為銳角.且滿,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省濰坊市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù).其圖象的兩個相鄰對稱中心的距離為,且過點(diǎn)
(I)函數(shù)f(x)的達(dá)式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對邊,,角C為銳角.且滿,求c的值.

查看答案和解析>>

同步練習(xí)冊答案