【題目】一位同學家里訂了一份報紙,送報人每天都在在早上5:20~6:40之間將報紙送到達,該同學的爸爸需要早上6:00~7:00之間出發(fā)去上班,則這位同學的爸爸在離開家前能拿到報紙的概率是

【答案】
【解析】解:如圖所示,

設送報人到達的時間為x,這位同學的爸爸在離開家為y;
則(x,y)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為Ω={(x,y)| ≤x≤ ,6≤y≤7},一個矩形區(qū)域,面積為SΩ=1× = ,
事件A所構成的區(qū)域為A={(x,y)| ≤x≤ ,6≤y≤7,x<y}即圖中的陰影部分,
其中A(6,6),C( ,6).B( ),
△ABC面積為= × × = ,則陰影部分的面積SA= =
則對應的概率P= =
所以答案是:
【考點精析】本題主要考查了幾何概型的相關知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點,且弦AB的長為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內,已知A(3,2)是圓C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若圓C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(﹣m,0),(m,0),則實數(shù)m的取值集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如表是某校120名學生假期閱讀時間(單位:小時)的頻率分布表,現(xiàn)用分層抽樣的方法從[10,15),[15,20),[20,25),[25,30)四組中抽取20名學生了解其閱讀內容,那么從這四組中依次抽取的人數(shù)是(

分組

頻數(shù)

頻率

[10,15)

12

0,10

[15,20)

30

a

[20,25)

m

0.40

[25,30)

n

0.25

合計

120

1.00


A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某位同學在2015年5月進行社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):

5月1日

5月2日

5月3日

5月4日

5月5日

平均氣溫x(°C)

9

10

12

11

8

銷量y(杯)

23

25

30

26

21


(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程 = x+
(參考公式: = , =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京是我國嚴重缺水的城市之一.為了倡導“節(jié)約用水,從我做起”,小明在他所在學校的2000名同學中,隨機調查了40名同學家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計小明所在學校2000名同學家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機抽取2名同學家庭進行訪談,求這2名同學中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1 的離心率為 ,且經過點M 的直徑C1的長軸.如圖,C是橢圓短軸端點,動直線AB過點C且與圓C2交于A,B兩點,CD垂直于AB交橢圓于點D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時直線AB的方程.

查看答案和解析>>

同步練習冊答案