已知函數(shù)f(x)=ax+blnx+c(a,b,c是常數(shù))在x=e處的切線方程為(e-1)x+ey-e=0,且f(1)=0.
(Ⅰ)求常數(shù)a,b,c的值;
(Ⅱ)若函數(shù)g(x)=x2+mf(x)(m∈R)在區(qū)間(1,3)內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)利用f(x)在x=e處的切線方程,可得f(e)=-
e-1
e
,且f(e)=2-e,f(1)=a+c=0,即可求常數(shù)a,b,c的值;
(Ⅱ)求導(dǎo)函數(shù),令d(x)=2x2-mx+m(x>0),分類討論,建立不等式,即可求實(shí)數(shù)m的取值范圍.
解答: 解:(Ⅰ)由題設(shè)知,f(x)的定義域?yàn)椋?,+∞),f(x)=a+
b
x
,
∵f(x)在x=e處的切線方程為(e-1)x+ey-e=0,
f(e)=-
e-1
e
,且f(e)=2-e,即a+
b
e
=-
e-1
e
,且ae+b+c=2-e,
又f(1)=a+c=0,解得a=-1,b=1,c=1…(5分)
(Ⅱ)由(Ⅰ)知f(x)=-x+lnx+1(x>0)
∴g(x)=x2+mf(x)=x2-mx+mlnx+m(x>0)
g(x)=2x-m+
m
x
=
1
x
(2x2-mx+m)(x>0)
…(7分)
令d(x)=2x2-mx+m(x>0).
(。┊(dāng)函數(shù)g(x)在(1,3)內(nèi)有一個(gè)極值時(shí),g′(x)=0在(1,3)內(nèi)有且僅有一個(gè)根,
即d(x)=2x2-mx+m=0在(1,3)內(nèi)有且僅有一個(gè)根,
又∵d(1)=2>0,當(dāng)d(3)=0,即m=9時(shí),d(x)=2x2-mx+m=0在(1,3)內(nèi)有且僅有一個(gè)根x=
3
2
,當(dāng)d(3)≠0時(shí),應(yīng)有d(3)<0,即2×32-3m+m<0,解得m>9,
∴m≥9.
(ⅱ)當(dāng)函數(shù)g(x)在(1,3)內(nèi)有兩個(gè)極值時(shí),g′(x)=0在(1,3)內(nèi)有兩個(gè)根,
即二次函數(shù)d(x)=2x2-mx+m=0在(1,3)內(nèi)有兩個(gè)不等根,
所以
△=m2-4×2×m>0
d(1)=2-m+m>0
d(3)=2×32-3m+m>0
1<
m
4
<3
,解得8<m<9.
綜上,實(shí)數(shù)m的取值范圍是(8,+∞)…(13分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值,考查分類討論的數(shù)學(xué)思想,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是( 。
A、數(shù)據(jù) 5,4,4,3,5,2 的眾數(shù)是 4
B、一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C、數(shù)據(jù) 2,3,4,5 的標(biāo)準(zhǔn)差是數(shù)據(jù) 4,6,8,10 的標(biāo)準(zhǔn)差的一半
D、頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體AC1的棱長為1,過點(diǎn)A作平面A1BD的垂線,垂足為H.則以下命題中,錯(cuò)誤的命題是( 。
A、點(diǎn)H是△A1BD的垂心
B、AH垂直平面CB1D1
C、直線AH和BB1所成角為45°
D、AH的延長線經(jīng)過點(diǎn)C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1

(1)當(dāng)a=2時(shí),證明對(duì)任意的x∈(1,+∞),f(x)>1;
(2)求證:ln(n+1)>
1
3
+
1
5
+
1
7
+…+
1
2n+1
(n∈N*).
(3)若函數(shù)f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)促銷活動(dòng).活動(dòng)規(guī)則如下:顧客消費(fèi)額每滿100元就可抽一次獎(jiǎng),例如:顧客消費(fèi)額為299元可抽兩次獎(jiǎng),所得獎(jiǎng)金金額是兩次兩次抽獎(jiǎng)獲得的獎(jiǎng)金金額的和.顧客每抽一次獎(jiǎng),得100元獎(jiǎng)金的概率為
1
10
,得50元獎(jiǎng)金的概率為
1
5
,得10元獎(jiǎng)金的概率為
7
10

(1)如果顧客恰好消費(fèi)了100元,并按規(guī)則參與抽獎(jiǎng)活動(dòng),求該顧客得到的獎(jiǎng)金金額不低于20元的概率;
(2)假設(shè)某位顧客消費(fèi)額為230元,并按規(guī)則參與抽獎(jiǎng)活動(dòng),所獲得的獎(jiǎng)金金額為X(元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,AB∥CD,△PAB和△PAD是兩個(gè)邊長為2的正三角形.DC=4,PD⊥PB,點(diǎn)E是CD的中點(diǎn).
(Ⅰ)求證:AE⊥面PBD:
(Ⅱ)求直線CB與平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)調(diào)查統(tǒng)計(jì),某種型號(hào)的汽車在勻速行駛中,每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/時(shí))的函數(shù)可表示為y=
1
120000
x3-
1
50
x+
18
5
(0<x≤100).已知甲、乙兩地相距100千米,在勻速行駛速度不超過100千米/時(shí)的條件下,該種型號(hào)的汽車從甲地到乙地的耗油量記為f(x)(升).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,當(dāng)x為多少時(shí),耗油量f(x)為最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下面四個(gè)判斷:
①命題:“設(shè)a、b∈R,若a+b≠6,則a≠3或b≠3”是一個(gè)假命題
②若“p或q”為真命題,則p、q均為真命題
③命題“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函數(shù)f(x)=ln(a+
2
x+1
)的圖象關(guān)于原點(diǎn)對(duì)稱,則a=3
其中錯(cuò)誤的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<3},B={x|x≤2},則A∩(∁RB)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案