已知等比數(shù)列{an}的前n項和為Sn,若S1,2S2,3S3成等差數(shù)列,且S4=
4027
,求數(shù)列{an}的通項公式.
分析:根據(jù)S1,2S2,3S3成等差數(shù)列建立等式,求出q的值,然后根據(jù)等比數(shù)列的求和公式建立等式,可求出的首項,從而求出數(shù)列的通項.
解答:解:設等比數(shù)列{an}的公比為q,
∵S1,2S2,3S3成等差數(shù)列
∴4S2=S1+3S3,即4(a1+a2)=a1+3(a1+a2+a3
∴a2=3a3,即q=
1
3
又S4=
40
27

a1(1-q4)
1-q
=
40
27
解得a1=1
∴an=(
1
3
)
n-1
點評:本題主要考查了等差數(shù)列的性質,以及等比數(shù)列的求和,同時考查了運算求解的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案