1.已知非零向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|${\overrightarrow b}$|=1,|2$\overrightarrow a$-$\overrightarrow b}$|=1,則|${\overrightarrow a}$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

分析 由題意可得$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•1•$\frac{1}{2}$=$\frac{|\overrightarrow{a}|}{2}$,再根據(jù),${|2\overrightarrow{a}-\overrightarrow|}^{2}$=1,求得|$\overrightarrow{a}$|的值.

解答 解:∵非零向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|${\overrightarrow b}$|=1,∴$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•1•$\frac{1}{2}$=$\frac{|\overrightarrow{a}|}{2}$,
∵|2$\overrightarrow a$-$\overrightarrow b}$|=1,∴${|2\overrightarrow{a}-\overrightarrow|}^{2}$=4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=4${|\overrightarrow{a}|}^{2}$-2|$\overrightarrow{a}$|+1=1,∴4${|\overrightarrow{a}|}^{2}$-2|$\overrightarrow{a}$|=0,∴|${\overrightarrow a}$|=$\frac{1}{2}$,
故選:A.

點評 本題主要考查兩個向量的數(shù)量積的定義,向量的模的計算,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知平面α的一個法向量$\overrightarrow n$=(2,1,2),點A(-2,3,0)在α內,則P(1,1,4)到α的距離為(  )
A.10B.4C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.三段論演繹 (1)因為菱形是平行四邊形,(2)四邊形ABCD是菱形,(3)所以四邊形ABCD是平行四邊形,以上三段論演繹中“小前提”是( 。
A.(1)B.(2)C.(3)D.(1)(2)(3)都是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則z=2x-y的最大值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知公差d>0的等差數(shù)列{an}中,a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項an;
(2)設Sn=$\frac{1}{{{a_1}{a_2}}}$+$\frac{1}{{{a_2}{a_3}}}$+…+$\frac{1}{{{a_n}{a_{n+1}}}}$,求證:Sn<$\frac{1}{40}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某同學先后投擲一枚骰子兩次,第一次向上的點數(shù)記為x,第二次向上的點數(shù)記為y,在直角坐標xOy系中,以(x,y)為坐標的點落在直線2x-y=1上的概率為$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{ax}{1+{x}^{2}}$+1(a≠0).
(Ⅰ)若函數(shù)f(x)圖象在點(0,1)處的切線方程為x-2y+1=0,求a的值;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)若a>0,g(x)=x2emx,且對任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=loga(x2+3x+a)的值域為R,則a的取值范圍為(0,1)∪(1,$\frac{9}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(x-1)-kx+k+1.
(Ⅰ)當k=1時,證明:f(x)≤0;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間;
(Ⅲ)證明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+…+$\frac{lnn}{n+1}$<$\frac{{n}^{2}-n}{4}$(n∈N*,且n≥2).

查看答案和解析>>

同步練習冊答案