已知數(shù)列{an}的前n項和為Sn滿足:Sn=
a
a-1
(an-1)
(a為常數(shù),且a≠0,a≠1)
(1)若a=2,求數(shù)列{an}的通項公式
(2)設(shè)bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值.
(3)在滿足條件(2)的情形下,設(shè)cn=
1
1+an
+
1
1-an+1
,數(shù)列{cn}前n項和為Tn,求證Tn>2n-
1
3
分析:(1)當a=2時,Sn=2an-2,當n≥2時,Sn=2an-2Sn-1=2an-1′-2,兩式相減得到遞推公式,再求解.
(2)由(1)知,bn=
2•
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
an(a-1)
,利用特殊項,必有b22=b1b3,求出a,再回代驗證,確定a的值.
(3)由(2)知an=(
1
3
)n
,可得cn=
1
1+(
1
3
)
n
+
1
1-(
1
3
)
n+1
=
3n
3n+1
+
3n+1
3n+1-1
=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1
=1-
1
3n+1
+1+
1
3n+1-1
=2-(
1
3n+1
-
1
3n+1-1
)
,直接求和不易化簡計算,先進行放縮得出cn=2-(
1
3n+1
-
3
3n+1-1
)>2-(
1
3n
-
1
3n+1
)
,求和及證明可行.
解答:解:(1)當a=2時,Sn=2an-2
當n=1時,S1=2a1-2⇒a1=2…(1分)
當n≥2時,Sn=2an-2Sn-1=2an-1′-2…(2分)
兩式相減得到an=2an-2an-1,(an-1≠0)得到
an
an-1
=2
…(3分)an=2n…(4分)
(2)由(1)知,bn=
2•
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
an(a-1)
,
若{bn}為等比數(shù)列,
則有b22=b1b3,而b1=3,b2=
3a+2
a
,b3=
3a2+2a+2
a2
,
(
3a+2
a
)2=3•
3a2+2a+2
a2
,解得a=
1
3
,再將a=
1
3
代入得bn=3n成立,所以a=
1
3
.       …(9分)
(3)證明:由(2)知an=(
1
3
)n

所以cn=
1
1+(
1
3
)
n
+
1
1-(
1
3
)
n+1
=
3n
3n+1
+
3n+1
3n+1-1
=
3n+1-1
3n+1
+
3n+1-1+1
3n+1-1
=1-
1
3n+1
+1+
1
3n+1-1
=2-(
1
3n+1
-
1
3n+1-1
)
,…11
1
3n+1
1
3n
,
1
3n+1-1
1
3n+1
1
3n+1
-
1
3n+1-1
1
3n
-
1
3n+1

所以cn=2-(
1
3n+1
-
3
3n+1-1
)>2-(
1
3n
-
1
3n+1
)
,…13
從而Tn=c1+c2+…+cn>[2-(
1
3
-
1
32
)]+[2-(
1
32
-
1
33
)]+…[2-(
1
3n
-
1
3n+1
)]
=2n-[(
1
3
-
1
32
)+(
1
32
-
1
33
)+…+(
1
3n
-
1
3n+1
)]
=2n-(
1
3
-
1
3n+1
)>2n-
1
3

Tn>2n-
1
3
.…14
點評:本題考查數(shù)列通項公式求解,數(shù)列性質(zhì)的判斷,數(shù)列求和及放縮法證明不等式,靈活的考查了知識,具有一定的綜合性,屬于中檔題,也是好題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案