1.如果直線2x-y+m=0與圓x2+(y-2)2=5相切,那么m的值為-3或7.

分析 由題意直線2x-y+m=0與圓x2+(y-2)2=5相切,圓心到直線的距離等于半徑,即可得到答案.

解答 解:由題意:圓x2+(y-2)2=5的方程可得,圓心(0,2),半徑為$\sqrt{5}$.
∵直線2x-y+m=0與圓相切.
∴圓心到直線的距離d=r,
所以:$\frac{|-2+m|}{\sqrt{5}}$=$\sqrt{5}$,
解得:m=-3或m=7,
故答案為:-3或7.

點評 本題考查了圓與直線的關(guān)系,知道圓的方程會求圓心和半徑,以及點到直線的距離公式.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,已知a2-c2=2b,且sinAcosC=3cosAsinC.
(Ⅰ)求b;
(Ⅱ)若a=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖直角梯形OABC中,$∠COA=∠OAB=\frac{π}{2},OC=2,OA=AB=1,SO⊥$面OABC,SO=1,以O(shè)C,OA,OS分別為x軸,y軸,z軸建立直角坐標系O-xyz.
(1)求$\overrightarrow{SC}$與$\overrightarrow{OB}$的夾角α的余弦值;
(2)設(shè)SB與平面SOC所成的角為β,求sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150]后得到如圖所示的頻率分布直方圖,則估計本次考試的平均分為( 。
A.121B.119C.118.5D.118

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)[x]表示不超過x的最大整數(shù)(如$[2]=2,[{\frac{5}{4}}]=1$),對于函數(shù)f(x)=$\frac{{{{2015}^x}}}{{1+{{2015}^x}}}$,函數(shù)$g(x)=[{f(x)-\frac{1}{2}}]+[{f(-x)-\frac{1}{2}}]$的值域是( 。
A.{-1,0}B.{-1,1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,O為等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M、N兩點與底邊上的高AD交于點G,與AB、AC分別相切于E、F兩點.
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且$AE=MN=2\sqrt{3}$,求四邊形EBCF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知參數(shù)方程$\left\{\begin{array}{l}{x=at+lcosq}\\{y=bt+lsinq}\end{array}\right.$(a、b、l均不為零,0≤q≤2p),若分別、賢為參數(shù),②l為參數(shù),③q為參數(shù),則下列結(jié)論中成立的是( 。
A.①、②、③均直線B.只有②是直線C.①、②是直線,③是圓D.②是直線,①、③是圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,則輸出n的值是( 。
A.5B.15C.23D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$\frac{{3-sin{{70}°}}}{{1+{{sin}^2}{{10}°}}}$=( 。
A.$\frac{1}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊答案