已知函數(shù)f(x)=3sin(2x-
π
6
)和g(x)=2cos(2x+φ)的圖象的對稱軸完全相同,其中φ∈(0,
π
2
),則φ=
 
分析:由已知中函數(shù)f(x)=3sin(2x-
π
6
)和g(x)=2cos(2x+φ)的圖象的對稱軸完全相同,根據(jù)正弦型函數(shù)的對稱性,可以確定出對稱軸的方程,結(jié)合余弦函數(shù)的對稱性,也可得到函數(shù)g(x)的對稱軸方程,由此即可求出φ值.
解答:解:∵函數(shù)f(x)=3sin(2x-
π
6
),
∴函數(shù)f(x)的對稱軸為x=kπ+
π
3
,k∈Z
∵g(x)=2cos(2x+φ).
∴g(x)的對稱軸為x=kπ+
π-φ
2
,k∈Z
∵函數(shù)f(x)=3sin(2x-
π
6
)和g(x)=2cos(2x+φ)的圖象的對稱軸完全相同.又函數(shù)的周期相同,
π-φ
2
=
π
3
,φ∈(0,
π
2
),
解得φ=
π
3
,
故答案為:
π
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是正弦型函數(shù)的對稱性和余弦型函數(shù)的對稱性,注意函數(shù)的周期相同,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3•2x-1,則當(dāng)x∈N時(shí),數(shù)列{f(n+1)-f(n)}( 。
A、是等比數(shù)列B、是等差數(shù)列C、從第2項(xiàng)起是等比數(shù)列D、是常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x
+
1
x+2
的定義域?yàn)榧螦,B={x|x<a}.
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)當(dāng)x∈[1,4]時(shí),求函數(shù)h(x)=[f(x)+1]•g(x)的值域;
(2)如果對任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案