7.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(m,2m-1),若向量$\overrightarrow{a}$與$\overrightarrow$共線,則實數(shù)m=2.

分析 利用向量共線的充要條件列出方程,求解即可.

解答 解:向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(m,2m-1),若向量$\overrightarrow{a}$與$\overrightarrow$共線,
可得:3m=4m-2,解得m=2
故答案為:2.

點評 本題考查向量共線的充要條件的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知cosα=-$\frac{3}{5}$,求$\frac{cos(α-\frac{7π}{2})+2sin(3π-α)}{csc(3π+α)+sec(\frac{5π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知數(shù)列{an}是各項為正數(shù)的等比數(shù)列,且a2=9,a4=81.
(1)求數(shù)列{an}的通項公式an;
(2)若bn=log3an,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知復數(shù)(1+i)z=2-3i(i為虛數(shù)單位),則z在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3}{2}π)}}{cot(-α-π)sin(-π+α)}$=cosα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2-4x+c,且 f (0)=-5,f (x)<0的解集是(-1,5).
(1)求 f (x)的解析式;
(2)求函數(shù) f (x)在x∈[0,3]上的值域;
(3)設g(x)=f (x)-mx,且g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知全集U=R,若集合M={0,1,$\frac{π}{2}$},N={y|y=cosx,x∈M},則M與N的關系用韋恩(Venn)圖可以表示為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{a{e}^{x+2}}{2+x}$(a≠0),g(x)=$\frac{1}{x+2}$+2ln(x+2).
(1)若1<a<$\frac{3}{2}$,試問是否存在x1,x2∈[-$\frac{3}{2}$,-a],使得f(x1)>g(x2);
(2)若P是曲線y=g(x)上任意一點,求點P到直線8x+y+15=0的最小距離,并求此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)y=f(x)的圖象為如圖所示的折線,則${∫}_{-1}^{1}$[(x+2)f(x)]dx=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習冊答案