7.已知函數(shù)f(x)=ax2-2x+1在[1,+∞)上遞減,則實(shí)數(shù)a的取值范圍為(-∞,0].

分析 分類討論,利用一次函數(shù)與二次函數(shù)的單調(diào)性,即可確定實(shí)數(shù)a的取值范圍.

解答 解:當(dāng)a=0時(shí),函數(shù)f(x)=-2x+1在[1,+∞),符合題意;
當(dāng)a≠0時(shí),$\left\{\begin{array}{l}{a<0}\\{\frac{1}{a}≤1}\end{array}\right.$,所以a<0,
∴實(shí)數(shù)a的取值范圍是:a≤0
故答案為:(-∞,0].

點(diǎn)評 本題考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想,利用一次函數(shù)與二次函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{ax-1}{e^x}$.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在銳角三角形中,A=2B,則下列敘述正確的是②③.
①sin3B=sin2C  ②tan$\frac{C}{2}$tan$\frac{3B}{2}$=1  ③$\frac{π}{6}$<B<$\frac{π}{4}$  ④$\frac{a}$∈($\sqrt{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在等比數(shù)列{an}中,若a1=1,a3a5=4(a4-1),則a7=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線y=x+b與曲線y=$\sqrt{49-{x}^{2}}$有公共點(diǎn),則b的取值范圍是(  )
A.[-7,7$\sqrt{2}$]B.[-7$\sqrt{2}$,7$\sqrt{2}$]C.[-7,7]D.[0,7$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)中,圓C的方程為ρ=2$\sqrt{5}$sinθ.
(1)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P(3,$\sqrt{5}$),直線l與圓C相交于A、B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x,y為任意實(shí)數(shù),有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三個(gè)數(shù)中最大數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(sinα+cosα)=sinα•cosα,則f(sin$\frac{π}{6}$)的值為( 。
A.$-\frac{3}{8}$B.$\frac{1}{8}$C.$-\frac{1}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)y=m與函數(shù)$y=\frac{|x|-1}{{|{x-1}|}}$的圖象無公共點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,-1)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案