定義在R上的函數(shù)滿足,且時(shí),__________
-1
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204903506564.png" style="vertical-align:middle;" />,所以是奇函數(shù),所以當(dāng)時(shí),,則
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823204903678652.png" style="vertical-align:middle;" />,所以,所以是周期為4的周期函數(shù)。而,所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210540363315.png" style="vertical-align:middle;" />,若存在非零實(shí)數(shù)滿足對(duì)于任意,均有,且,則稱上的高調(diào)函數(shù).如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210541175303.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),當(dāng)時(shí),,且上的4高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)設(shè)函數(shù)的定義域是R,對(duì)于任意實(shí)數(shù),恒有,且當(dāng) 時(shí),
(Ⅰ)若,求的值;(Ⅱ)求證:,且當(dāng)時(shí),有
(Ⅲ)判斷在R上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn),,如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱為弦的伴隨切線。特別地,當(dāng)時(shí),又稱的λ-伴隨切線。
(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),
(Ⅰ)畫出函數(shù)圖像;
(Ⅱ)求的值;
(Ⅲ)當(dāng)時(shí),求取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),則的值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)滿足:,,則____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于給定的實(shí)數(shù)、,定義運(yùn)算“”:
則集合。ㄗⅲ骸啊ぁ焙汀埃北硎緦(shí)數(shù)的乘法和加法運(yùn)算)的最大元素是____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案