甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是,且面試是否合格互不影響.求:

(Ⅰ)至少有1人面試合格的概率;

(Ⅱ)簽約人數(shù)的分布列和數(shù)學(xué)期望.

解:用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨立,且

P(A)=P(B)=P(C)=

(Ⅰ)至少有1人面試合格的概率是

(Ⅱ)的可能取值為0,1,2,3.

     

              =

              =

     

              =

              =

     

     

所以, 的分布列是

0

1

2

3

P

的期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是
12
,且面試是否合格互不影響.求:
(Ⅰ)至少有1人面試合格的概率;
(Ⅱ)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)甲面試合格的概率為
1
2
,乙、丙面試合格的概率都是
1
3
,且面試是否合格互不影響.
(Ⅰ)求至少有1人面試合格的概率;
(Ⅱ)求簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人參加了一家公司的招聘面試,設(shè)每人面試合格的概率都是
12
,且面試是否合格互不影響求:
(1)三人面試都不合格的概率;
(2)至少有1人面試合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人參加了一家公司招聘面試,甲表示只要面試合格就簽約,乙、丙則約定兩人面試都合格就一同簽約,否則兩人都不簽約,設(shè)每人面試合格的概率都是
12
,且面試是否合格互不影響.
(1)求甲、乙、丙三人中至少有一人面試合格的概率;
(2)求簽約人數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試

合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是,且面試是否合格互不影響.求:

(Ⅰ)至少有1人面試合格的概率;

(Ⅱ)簽約人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案