精英家教網 > 高中數學 > 題目詳情
某班數學課隨堂測試時,老師共給出四道題,某學生能正確解答第一、二、三、四道題的概率分別為
4
5
、
3
5
、
2
5
,
1
5
,且各題能否準確解答互不影響.
(Ⅰ)求該學生四道題中只有一道題不能正確解答的概率;
(Ⅱ)設該學生四道題中能正確解答的題數記為ξ,求隨機變量ξ的分布列與數學期望.
考點:離散型隨機變量的期望與方差,相互獨立事件的概率乘法公式
專題:概率與統(tǒng)計
分析:(Ⅰ)利用相互獨立事件的概率乘法公式能求出該學生四道題中只有一道不能正確解答的概率.
(Ⅱ)由題意知ξ的可能取值為0,1,2,3,4,分別求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),由此能求出隨機變量ξ的分布列與數學期望.
解答: 解:(Ⅰ)記“該學生能正確解答第i道題”的事件為Ai(i=1,2,3,4),
則P(A1)=
4
5
,P(A2)=
3
5
,P(A3)=
2
5
,P(A4)=
1
5
,
∴該學生四道題中只有一道不能正確解答的概率為:
P=P(
.
A1
A2A3A4
)+P(A1
.
A2
A3A4
)+P(A1A2
.
A3
A4
)+P(A1A2A3
.
A4

=
1
5
×
3
5
×
2
5
×
1
5
+
4
5
×
2
5
×
2
5
×
1
5
+
4
5
×
3
5
×
3
5
×
1
5
+
4
5
×
3
5
×
2
5
×
4
5

=
154
625

(Ⅱ)由題意知ξ的可能取值為0,1,2,3,4,
P(ξ=0)=
1
5
×
2
5
×
3
5
×
4
5
=
24
625
,
P(ξ=1)=
154
625

P(ξ=2)=
4×3×3×4
625
+
4×2×2×4
625
+
4×2×3×1
625
+
1×3×2×4
625
+
1×3×3×1
625
+
1×2×2×1
625
=
269
625
,
P(ξ=3)=
4×3×2×4
625
+
4×3×3×1
625
+
4×2×2×1
625
+
1×3×2×1
625
=
154
625

P(ξ=4)=
4×3×2×1
625
=
24
625

∴ξ的分布列為:
ξ 0
P
24
625
 
154
625
269
625
154
625
24
625
Eξ=
24
625
+1×
154
625
+2×
269
625
+3×
154
625
+4×
24
625
=2.
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,是中檔題,歷年高考中都是必考題型之一.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知隨機變量X~N(5,32),隨機變量η=
X-2
3
,且η~N(μ,σ2),則(  )
A、μ=1,σ=1
B、μ=1,σ=
1
3
C、μ=1,σ=
7
3
D、μ=3,σ=
4
9

查看答案和解析>>

科目:高中數學 來源: 題型:

四棱錐P-ABCD的三視圖如圖所示,四棱錐P-ABCD的五個頂點都在一個球面上,E、F分別是棱AB、CD的中點,直線EF被球面所截得的線段長為2
2
,則該球表面積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某工廠某種產品的年產量為1000x件,其中x∈[20,100],需要投入的成本為C(x),當x∈[20,80]時,C(x)=
1
2
x2-30x+500(萬元);當x∈(80,100]時,C(x)=
20000
x
(萬元).若每一件商品售價為
lnx
x
(萬元),通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關于x的函數解析式;
(2)年產量為多少件時,該廠在這一商品的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

設數列{an},{bn}滿足a1=b1=6,a2=b2=4,a3=b3,{an-2}是等比數列,且數列{bn+1-bn}是等差數列,其中n∈N*
(1)求a3的值;
(2)求數列{an}和{bn}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=|x-a|(a>0),且不等式f(x)≥|x+1|的解集為{x|x≤
1
2
}.
(Ⅰ)求a的值;
(Ⅱ)設函數g(x)=f(x)+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•g(x)對任意m∈R且m≠0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=O.將菱形沿對角線AC折起,使得平面ABC⊥平面ADC,得到三棱錐B-ACD,M是棱BC上的一點.

(Ⅰ)若OM⊥BC,求證:BC⊥平面OMD;
(Ⅱ)若OM∥平面ABD,求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果b是a和c的等差中項,y是x和z的等比中項,且x,y,z都是正數.則(b-c)logmx+(c-a) logmy+(a-b) logmz=
 
,其中m>0且m≠1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一個空間幾何體的三視圖如圖所示,根據圖中標出的尺寸,可得這個幾何體的體積為
 

查看答案和解析>>

同步練習冊答案