【題目】設(shè)向量 =(sinx, cosx), =(﹣1,1), =(1,1),其中x∈(0,π].
(1)若( + )∥ ,求實數(shù)x的值;
(2)若 = ,求函數(shù)sinx的值.
【答案】
(1)解:向量 =(sinx, cosx), =(﹣1,1),
∴ + =(sinx﹣1, cosx+1);
又 =(1,1),且( + )∥ ,
∴(sinx﹣1)﹣( cosx+1)=0,
化簡得sinx﹣ cosx=2,
即2( sinx﹣ cosx)=2sin(x﹣ )=2,
∴sin(x﹣ )=1;
又x∈[0,π],
∴x﹣ ∈[﹣ , ],
∴x﹣ = ,
∴x= ;
(2)解: =﹣sinx+ cosx
=2( cosx﹣ sinx)
=2cos(x+ )
= ,
∴cos(x+ )= ;
又x∈[0,π],
則x+ ∈[ , ],
∴x+ ∈[ , ],
∴sin(x+ )= = ;
∴sinx=sin(x+ ﹣ )=sin(x+ ﹣ )
=sin(x+ )cos ﹣cos(x+ )sin
= × ﹣ ×
= .
【解析】(1)根據(jù)平面向量的坐標(biāo)運算與共線定理,列出方程求出sinx的值,再根據(jù)x的取值范圍求出x的值;(2)根據(jù)平面向量數(shù)量積的定義和三角恒等變換,利用特殊角的三角函數(shù)值,即可求出sinx的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:關(guān)于x的不等式x2+(a﹣1)x+1≤0的解集為;命題q:方程 表示焦點在y軸上的橢圓;若命題q為真命題,p∨q為真命題.
(1)求實數(shù)a的取值范圍;
(2)判斷方程(a+1)x2+(1﹣a)y2=(a+1)(1﹣a)所表示的曲線的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年12月1日,漢孝城際鐵路正式通車運營.除始發(fā)站(漢口站)與終到站(孝感東站)外,目前沿途設(shè)有7個?空,其中,武漢市轄區(qū)內(nèi)有4站(后湖站、金銀潭站、天河機場站、天河街站),孝感市轄區(qū)內(nèi)有3站(閔集站、毛陳站、槐蔭站).為了了解該線路運營狀況,交通管理部門計劃從這7個車站中任選3站調(diào)研.
(1)求孝感市轄區(qū)內(nèi)至少選中1個車站的概率;
(2)若孝感市轄區(qū)內(nèi)共選中了X個車站,求隨機變量X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題: ①共線向量是在同一條直線上的向量;
②若兩個向量不相等,則它們的終點不可能是同一點;
③與已知非零向量共線的單位向量是唯一的;
④若四邊形ABCD是平行四邊形,則 與 , 與 分別共線.
其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象( )
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點( ,0)對稱
D.關(guān)于點( ,0)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正六角星薄片(其對稱軸與水面垂直)勻速地升出水面,直到全部露出水面為止,記時刻t薄片露出水面部分的圖形面積為S(t)(S(0)=0),則導(dǎo)函數(shù)y=S'(t)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校統(tǒng)考中,甲、乙兩班數(shù)學(xué)學(xué)科前10名的成績?nèi)绫恚?
(I)若已知甲班10位同學(xué)數(shù)學(xué)成績的中位數(shù)為125,乙班10位同學(xué)數(shù)學(xué)成績的平均分為130,求x,y的值;
(Ⅱ)設(shè)定分?jǐn)?shù)在135分之上的學(xué)生為數(shù)學(xué)尖優(yōu)生,從甲、乙兩班的所有數(shù)學(xué)尖優(yōu)生中任兩人,求兩人在同一班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某班50名學(xué)生身高的頻率分布直方圖,那么身高在區(qū)間[150,170)內(nèi)的學(xué)生約有人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com