(2012•武昌區(qū)模擬)(幾何證明)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F.若
AC
AB
=
3
5
,則
AF
FD
的值為
8
5
8
5
分析:連接OD,BC,設(shè)AC=3k,AB=5k,BC=4k,可證OD垂直平分BC,利用勾股定理可得到OG,得到DG,于是AE=4k,然后通過OD∥AE,利用相似比即可求出
AF
FD
的值.
解答:解:連接OD,BC,如圖,
∵AB為直徑,
∴∠ACB=90°,
又OD∥AE,∴∠OGB=∠ACB=90°,
∴OD⊥BC,
∴G為BC的中點(diǎn),即BG=CG,
又∵
AC
AB
=
3
5
,
∴設(shè)AC=3k,AB=5k,根據(jù)勾股定理得:BC=
AB2-AC2
=4k,
∴OB=
1
2
AB=
5k
2
,BG=
1
2
BC=2k,
∴OG=
OB2-BG2
=
3k
2

∴DG=OD-OG=
5k
2
-
3k
2
=k,
又四邊形CEDG為矩形,
∴CE=DG=k,
∴AE=AC+CE=3k+k=4k,
而OD∥AE,
AF
FD
=
AE
OD
=
4k
5k
2
=
8
5

故答案為:
8
5
點(diǎn)評(píng):考查了與圓有關(guān)的比例線段,能夠綜合運(yùn)用勾股定理、相似三角形的判定和性質(zhì)以及平行線分線段成比例定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)已知數(shù)列{an},{bn}滿足:a1=3,當(dāng)n≥2時(shí),an-1+an=4n;對(duì)于任意的正整數(shù)n,b1+2b2+…+2n-1bn=nan.設(shè){bn}的前n項(xiàng)和為Sn
(Ⅰ)計(jì)算a2,a3,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求滿足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)在圓x2+y2=4上,與直線l:4x+3y-12=0的距離最小值是
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是線段PD上的點(diǎn),F(xiàn)是線段AB上的點(diǎn),且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)當(dāng)λ=1時(shí),證明DF⊥平面PAC;
(Ⅱ)是否存在實(shí)數(shù)λ,使異面直線EF與CD所成的角為60°?若存在,試求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)設(shè)fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角變換,估計(jì)fk(x)在k=l,2,3時(shí)的取值情況,對(duì)k∈N*時(shí)推測fk(x)的取值范圍是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(結(jié)果用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)2011年武漢電視臺(tái)問政直播節(jié)日首場內(nèi)容是“讓交通更順暢”.A、B、C、D四個(gè)管理部門的負(fù)責(zé)人接受問政,分別負(fù)責(zé)問政A、B、C、D四個(gè)管理部門的現(xiàn)場市民代表(每一名代表只參加一個(gè)部門的問政)人數(shù)的條形圖如下.為了了解市民對(duì)武漢市實(shí)施“讓交通更順暢”幾個(gè)月來的評(píng)價(jià),對(duì)每位現(xiàn)場市民都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
滿意 一般 不滿意
A部門 50% 25% 25%
B部門 80% 0 20%
C部門 50% 50% 0
D部門 40% 20% 40%
(I)若市民甲選擇的是A部門,求甲的調(diào)查問卷被選中的概率;
(11)若想從調(diào)查問卷被選中且填寫不滿意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案