(2013•長春一模)如圖,等腰梯形ABCD中,AB∥CD且AB=2AD,∠DAB=
π
3
,則以A、B為焦點,且過點D的雙曲線的離心率e=( 。
分析:由題可知,雙曲線離心率e=
|AB|
|DB|-|DA|
,由此可得結(jié)論.
解答:解:由題可知,雙曲線離心率e=
|AB|
|DB|-|DA|
,
設(shè)|AD|=|BC|=t則|AB|=2t,|CD|=2t-2tcos60°=t,|BD|=t
5-4cos60°
=
3
t
,
所以e=
|AB|
|DB|-|DA|
=
2t
3
t-t
=
3
+1

故選B.
點評:本題考查雙曲線的離心率,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)已知:x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點P(2,f(2))處的切線垂直于y軸,求實數(shù)a的值;
(2)當(dāng)a>0時,求函數(shù)f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)橢圓
 x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,右焦點到直線x+y+
6
=0
的距離為2
3
,過M(0,-1)的直線l交橢圓于A,B兩點.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若直線l交x軸于N,
NA
=-
7
5
NB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4]時,f(x)=x2-2x,則函數(shù)f(x)在[0,2013]上的零點個數(shù)是
604
604

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•長春一模)在正項等比數(shù)列{an}中,已知a1a2a3=4,a4a5a6=12,an-1anan+1=324,則n=(  )

查看答案和解析>>

同步練習(xí)冊答案