19.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+2x+1,且f(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,則實數(shù)a的取值范圍(-∞,-2$\sqrt{2}$).

分析 求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為a<(x+$\frac{2}{x}$)max=-2$\sqrt{2}$,根據(jù)不等式的性質(zhì)求出a的范圍即可.

解答 解:f′(x)=x2-ax+2,
由題意得?x∈(-2,-1),
使得不等式f′(x)=x2-ax+2<0成立,
即x∈(-2,-1)時,a<(x+$\frac{2}{x}$)max,
令g(x)=x+$\frac{2}{x}$,x∈(-2,-1),
則g′(x)=1-$\frac{2}{{x}^{2}}$=$\frac{{x}^{2}-2}{{x}^{2}}$,
令g′(x)>0,解得:-2<x<-$\sqrt{2}$,
令g′(x)<0,解得:-$\sqrt{2}$<x<-1,
故g(x)在(-2,-$\sqrt{2}$)遞增,在(-$\sqrt{2}$,-1)遞減,
故g(x)max=g(-$\sqrt{2}$)=-2$\sqrt{2}$,
故滿足條件a的范圍是(-∞,-2$\sqrt{2}$),
故答案為:(-∞,-2$\sqrt{2}$).

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如表:
日    期3月12日3月13日3月14日3月15日3月16日
晝夜溫差(°C)101113128
發(fā)芽數(shù)(顆)2325302616
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=\widehata+\widehatbx$;
(III)若由線性回歸方程得到的估計數(shù)據(jù)與實際數(shù)據(jù)誤差均不超過2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗,(II)中的回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,最小正周期為π且一條對稱軸為$x=\frac{π}{8}$的函數(shù)是( 。
A.y=sin2x+cos2xB.y=sinx+cosxC.$y=cos(2x+\frac{π}{2})$D.$y=sin(2x+\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ+2}\end{array}\right.$(θ∈[0,2π]),則圓C的圓心坐標(biāo)為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.圓心在y軸上,半徑為2,且過點(2,4)的圓的方程為( 。
A.x2+(y-1)2=4B.x2+(y-2)2=4C.x2+(y-3)2=4D.x2+(y-4)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-3$\overrightarrow{a}$+6$\overrightarrow$,$\overrightarrow{CD}$=4$\overrightarrow{a}$-$\overrightarrow$,則( 。
A.A、B、D三點共線B.A、B、C三點共線C.B、C、D三點共線D.A、C、D三點共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向左平移φ>0個單位后,所得圖象關(guān)于y軸對稱,則φ的最小值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若關(guān)于x的不等式|x-1|+|x+m|>3的解集為R,則實數(shù)m的取值范圍是( 。
A.(-∞,-4)∪(2,+∞)B.(-∞,-4)∪(1,+∞)C.(-4,2)D.[-4,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sin α=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求tan($\frac{π}{4}-α$)的值.

查看答案和解析>>

同步練習(xí)冊答案