已知集合A={2,log2t},集合B={x|x2-14x+24≤0},x,t∈R,且A⊆B.
(1)對(duì)于區(qū)間[a,b],定義此區(qū)間的“長度”為b-a,若A的區(qū)間“長度”為3,試求t的值.
(2)某個(gè)函數(shù)f(x)的值域是B,且f(x)∈A的概率不小于0.6,試確定t的取值范圍.
分析:(1)利用區(qū)間長度的定義,求t.
(2)利用概率公式求t的范圍.
解答:解:(1)∵A的區(qū)間“長度”為3,
∴l(xiāng)og2t-2=3,即log2t=5,t=32.
(2)由x2-14x+24≤0,得2≤x≤12,∴B=[2,12]
∴B的區(qū)間長度為10,設(shè)A的區(qū)間“長度”為x,因f(x)∈A的概率不小于0.6,所以
x
10
≥0.6

∴x≥6,即log2t-2≥6,解得t≥28=256.
又A⊆B,∴l(xiāng)og2t≤12,即t≤212=4096,
所以t的取值范圍為[256,4096](或[28,212])
點(diǎn)評(píng):本題主要考查區(qū)間長度的定義以及應(yīng)用,正確利用區(qū)間長度的應(yīng)用是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)的所有不同值的個(gè)數(shù).
(1)已知集合P={2,4,6,8},Q={2,4,8,16}分別求l(P),l(Q);
(2)求l(A)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=(x,y)|x一2y一l=0},B={(x,y)|ax-by+1=0},其中a,b∈{1,2,3,4,5,6},則A∩B=φ的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年黑龍江省高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合A={x|-l≤x≤3},集合B=|x|log2x<2},則A B=

A.{x|1≤x≤3}                           B.{x|-1≤x≤3}

C.{x| 0<x≤3}                            D.{x|-1≤x<0}

 

查看答案和解析>>

同步練習(xí)冊(cè)答案