分析:(1)由a
na
n+1=a
1a
1q
n-1=rq
n-1,a
na
n+1+a
n+1a
n+2>a
n+2a
n+3,知rq
n-1+rq
n>rq
n+1+q>q
2 即:q
2-q-1<0∴
(1-
)<q<
(1+
),由此能求出
0<q<.
(2)由數(shù)列{a
na
n+1}是公比為q的等比數(shù)列,知
==q,由此能求出b
n=q
n-1+rq
n-1=(1+r)q
n-1.
(3)當(dāng)q=1時,
=
=0;當(dāng)0q>1時,
=
=0.由此能求出
.
(4)由b
n=(1+r)q
n-1,知
=
log2(1+r)+nlog2q |
log2(1+r)+(n-1)log2q |
=1+
,由此能求出數(shù)列{
}的最大值和最小值.
解答:解:(1)∵數(shù)列{a
n}滿足條件:a
1=1,a
2=r,
且數(shù)列{a
na
n+1}是公比為q的等比數(shù)列,
∴q≠0,r≠0,且a
na
n+1=a
1a
1q
n-1=rq
n-1,
∵a
na
n+1+a
n+1a
n+2>a
n+2a
n+3,
∴rq
n-1+rq
n>rq
n+1+q>q
2 即:q
2-q-1<0,
∴
(1-
)<q<
(1+
),
∵q>0,
∴
0<q<.
(2)∵數(shù)列{a
na
n+1}是公比為q的等比數(shù)列,
∴
==q,
∵a
1=1,
∴當(dāng)n=2k-1時,a
n=q
k-1∵a
2=r,
∴當(dāng)n=2k時,a
n=rq
k-1.
∵b
n=a
2n-1+a
2n(n∈N),
∴b
n=q
n-1+rq
n-1=(1+r)q
n-1.
(3)當(dāng)q=1時,S
n=n(1+r),
=
=0;
當(dāng)0q>1時,S
n=
=
=0.
∴
=
.
(4)∵b
n=(1+r)q
n-1,
∴
=
log2(1+r)+nlog2q |
log2(1+r)+(n-1)log2q |
=1+
,
記
Cn=,
當(dāng)n-20.2>0,即n>21,n∈N
+時,C
n隨n的增大而減小,
∴
1<Cn≤C21=1+=.
當(dāng)n-20.2<0,即n≤20,n∈N
+時,C
n隨n的增大而減小,
∴1>C
n≥C
20=
1+=-4.
綜上所述,對任意的自然數(shù)n,有C
20≤C
n≤C
21,
∴數(shù)列{
}中,n=21時,取最大值
,n=20時,取最小值-4.
點(diǎn)評:本題考查數(shù)列的綜合應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價轉(zhuǎn)化.