精英家教網 > 高中數學 > 題目詳情
若sin(
π
6
-α)=
3
5
,則cos(
π
3
+α)=( 。
A、±
4
5
B、-
4
5
C、-
3
5
D、
3
5
考點:兩角和與差的余弦函數,兩角和與差的正弦函數
專題:三角函數的求值
分析:把cos(α+
π
3
)轉化成cos[
π
2
-(
π
6
-α)]利用誘導公式結合已知條件代入求解即可.
解答: 解:cos(α+
π
3
)轉化成cos[
π
2
-(
π
6
-α)]=sin(
π
6
-α)=
3
5

故選:D.
點評:本題主要考查了誘導公式的應用.解題的關鍵是找到cos(α+
π
3
)轉化成cos[
π
2
-(
π
6
-α)].
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

點A、B、C、D在同一個球的球面上,且AB=CD=
3
,BC=2AC=2BD=2,則該球的表面積為( 。
A、16πB、12π
C、8πD、4π

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在正方體ABCD A1B1C1D1中,M、N分別是棱C1D1,C1C的中點.給出以下四個結論:
①直線AM與直線C1C相交;
②直線AM與直線DD1異面;
③直線AM與直線BN平行;
④直線BN與直線MB1異面.
其中正確結論的序號為
 
(填入所有正確結論的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

設m>1,已知在約束條件
y≥x
y≤mx
x+y≤1
下,目標函數z=x2+y2的最大值為
2
3
,則實數m的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是2014年某大學自主招生面試環(huán)節(jié)中,七位評委為某考生打出的分數的莖葉統計圖,該數據的中位數和眾數依次為( 。
A、86,84
B、84,84
C、84,86
D、85,86

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f (x)=b•ax(其中a,b為常量,且a>0,a≠1)的圖象經過點A(1,6),B(3,24).
(1)求f(x);
(2)若函數g(x)=
1+ax-m•bx
在x∈(-∞,1]時有意義,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖是一個幾何體的三視圖,該幾何體的體積是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(僅文科生做)對具有線性相關關系的變量x和y,測得一組數據如下:
x24568
y3040605070
若已求得它們的回歸方程的
b
為6.5,則這條直線的回歸方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在z軸上與點A(-4,1,7)和點B(1,5,-2)等距離的點C的坐標為
 

查看答案和解析>>

同步練習冊答案