已知橢圓
x2
41
+
y2
25
=1的兩個焦點(diǎn)為F1,F(xiàn)2,弦AB過點(diǎn)F1,則△ABF2的周長為(  )
A、10
B、20
C、2
41
D、4
41
考點(diǎn):橢圓的簡單性質(zhì)
專題:
分析:根據(jù):∵橢圓
x2
41
+
y2
25
=1,得出a=
41
,運(yùn)用定義整體求解△ABF2的周長為4a,即可求解.
解答: 解:∵橢圓
x2
41
+
y2
25
=1的兩個焦點(diǎn)為F1,F(xiàn)2,弦AB過點(diǎn)F1
∴a=
41

∴|AB|+|BF2|+|AF2|=|AF1|+|BF1|+|BF2|+|AF2|
=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=4
41

故選:D
點(diǎn)評:本題考查了橢圓的方程,定義,整體求解的思想方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從一批棉花中抽取20根棉花纖維,測其長度(單位:mm),得頻率分布直方圖如圖,則此樣本在區(qū)間[40,50]上的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)之和為Sn,數(shù)列{an}由如下方式給定:
(k-1)k
2
<n≤
k(k+1)
2
(k∈N*)時,an=(-1)n-1k,定義集合M={n|an是Sn的整數(shù)倍,n∈N*且1≤n≤10},則M中所有元素之和為(  )
A、21B、22C、44D、45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)-cos(π+α)=
2
3
,α∈(0,π),則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有四個命題:
(1)函數(shù)y=sin(
2
3
x+
π
2
)
是偶函數(shù);
(2)函數(shù)f(x)=|cos2x|的最小正周期是π;
(3)函數(shù)f(x)=sin(x+
π
4
)
[-
π
2
,
π
2
]
上是增函數(shù);
(4)函數(shù)f(x)=sin2x-cos2x的一條對稱軸是x=
8

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2,3},B={-1,-2,0,2},f是從A到B的一一映射,則滿足“0的像”與“1的像”互為相反數(shù)的映射的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若PA⊥平面ABCD,且ABCD是矩形,若PA=3,AB=2,BC=2
3
,則二面角P-BD-A的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量ξ服從B~(6,
1
2
),則P(ξ=3)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得:lny=g(x)lnf(x),再兩邊同時求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)•
1
f(x)
•f′(x),于是得到y(tǒng)′=f(x)g(x)[g′(x)]lnf(x)+g(x)•
1
f(x)
•f′(x),運(yùn)用此方法求得函數(shù)y=x 
1
x
(x>0)的極值情況是( 。
A、極小值點(diǎn)為e
B、極大值點(diǎn)為e
C、極值點(diǎn)不存在
D、既有極大值點(diǎn),又有極小值點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案