【題目】數(shù)列滿(mǎn)足: ,且 ,其前n項(xiàng)和.
(1)求證:為等比數(shù)列;
(2)記為數(shù)列的前n項(xiàng)和.
(i)當(dāng)時(shí),求;
(ii)當(dāng)時(shí),是否存在正整數(shù),使得對(duì)于任意正整數(shù),都有?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析(2)(i),(ii)
【解析】
(1)利用當(dāng)時(shí),,進(jìn)行運(yùn)算,最后能證明出為等比數(shù)列;
(2)(i)利用錯(cuò)位相減法,可以求出;
(ii)根據(jù)的奇偶性進(jìn)行分類(lèi),利用差比判斷數(shù)列的單調(diào)性,最后可以求出的值.
(1)當(dāng)時(shí),, 整理得,
所以是公比為a的等比數(shù)列,又所以
(2)因?yàn)?/span>
(i)當(dāng)
兩式相減,整理得 .
(ii)因?yàn)?/span>, ∴當(dāng)為偶數(shù)時(shí),;
當(dāng)為奇數(shù)時(shí),,∴如果存在滿(mǎn)足條件的正整數(shù),則一定是偶數(shù).∵.
∴當(dāng)時(shí),即,當(dāng)時(shí),
即 ,即存在正整數(shù),使得對(duì)于任意正整數(shù)都有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列兩個(gè)命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關(guān)于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2是橢圓 的左、右焦點(diǎn),點(diǎn)P在橢圓C上,線(xiàn)段PF2與圓x2+y2=b2相切于點(diǎn)Q,且點(diǎn)Q為線(xiàn)段PF2的中點(diǎn),則 (其中e為橢圓C的離心率)的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)公司對(duì)最近6個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線(xiàn)性回歸模型擬合與之間的關(guān)系嗎?如果能,請(qǐng)求出關(guān)于的線(xiàn)性回歸方程,如果不能,請(qǐng)說(shuō)明理由;
(2)公司決定再采購(gòu)兩款車(chē)擴(kuò)大市場(chǎng), 兩款車(chē)各100輛的資料如表:
車(chē)型 | 報(bào)廢年限(年) | 合計(jì) | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車(chē)每年可為公司帶來(lái)收入元,不考慮采購(gòu)成本之外的其他成本,假設(shè)每輛車(chē)的使用壽命部是整數(shù)年,用每輛車(chē)使用壽命的頻率作為概率,以每輛車(chē)產(chǎn)生利潤(rùn)的平均數(shù)作為決策依據(jù),應(yīng)選擇采購(gòu)哪款車(chē)型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線(xiàn)方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)當(dāng)a=3時(shí),求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時(shí),f(x)≥a2﹣a﹣13,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓與軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.
(1)若直線(xiàn)過(guò)點(diǎn)并且與圓相切,求直線(xiàn)的方程;
(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線(xiàn)分別與軸交于點(diǎn),點(diǎn)是線(xiàn)段的中點(diǎn),直線(xiàn),求直線(xiàn)的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見(jiàn)部分如圖2,據(jù)此解答如下問(wèn)題:
(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線(xiàn)剪開(kāi)后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)請(qǐng)作出該函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的大致圖象;
(2)試判斷該函數(shù)的奇偶性,并運(yùn)用函數(shù)的奇偶性定義說(shuō)明理由;
(3)求該函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com