5.4張卡片上分別寫有數(shù)字1,1,2,2,從這4張卡片中隨機抽取2張,則取出的2張卡片上的數(shù)字不相等的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 先求出基本事件總數(shù),再求出取出的2張卡片上的數(shù)字不相等包含的基本事件個數(shù),由此能求出取出的2張卡片上的數(shù)字不相等的概率.

解答 解:4張卡片上分別寫有數(shù)字1,1,2,2,從這4張卡片中隨機抽取2張,
基本事件總數(shù)為n=${C}_{4}^{2}$=6,
取出的2張卡片上的數(shù)字不相等包含的基本事件個數(shù)m=${C}_{2}^{1}{C}_{2}^{1}$=4,
∴取出的2張卡片上的數(shù)字不相等的概率p=$\frac{m}{n}$=$\frac{4}{6}=\frac{2}{3}$.
故選:C.

點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意古典概型概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及其f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,$\frac{π}{2}$],求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)p:1<x<2,q:log2x>0,則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)p:(3x2+ln3)′=6x+3;q:(3-x2)ex的單調(diào)增區(qū)間是(-3,1),則下列復(fù)合命題的真假是( 。
A.“p∨q”假B.“p∧q”真C.“¬q”真D.p∨q真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.($\sqrt{x}$+$\frac{2}{\root{3}{x}}$)4展開式中所有項的系數(shù)和為( 。
A.16B.32C.64D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)z=1+i(i是虛數(shù)單位),則$\frac{2}{z}$=1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知復(fù)數(shù)z1=1+2i,z2=2+i,則|z2-z1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法正確的是( 。
A.“?x∈R,x2-1>0”的否定是“?x0∈R,x02-1<0”
B.若p∨q為真命題,則簡單命題p與q都為真命題
C.“?x∈R,(x-1)2>0”是一個真命題
D.“若x>2,則x2-x-2≥0”的逆否命題是“若x2-x-2<0,則x≤2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2016年春節(jié),“搶紅包”稱為社會熱議的話題之一,某機構(gòu)對春節(jié)期間用戶利用手機“搶紅包”的情況進行調(diào)查,如果一天內(nèi)搶紅包的總次數(shù)超過10次為“關(guān)注點高”,否則為“關(guān)注點低”,調(diào)查情況如表所示:
  關(guān)注點高關(guān)注點低  總計
 男性用戶 x 5 
 女性用戶 7 y 8
 總計 10 16 
(Ⅰ)填寫如表中x、y的值并判斷是否有95%以上的把握認為性別與關(guān)注點高低有關(guān)?
(Ⅱ)現(xiàn)要從上述男性用戶中隨機選出3名參加一項活動,以X表示選中的同學(xué)中搶紅包總次數(shù)超過10次的人數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).
下面的臨界值表供參考:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
獨立性檢驗統(tǒng)計量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案