4.與$\overrightarrow a=(2,-1,2)$共線,且滿足$\overrightarrow a•\overrightarrow z$=-18的向量$\overrightarrow z$的坐標為(-4,2,-4).

分析 根據(jù)向量$\overrightarrow{z}$與$\overrightarrow{a}$共線,設出$\overrightarrow{z}$=λ$\overrightarrow{a}$,代入數(shù)量積$\overrightarrow{a}$•$\overrightarrow{z}$=-18,即可求出λ的值.

解答 解:由向量$\overrightarrow{z}$與向量$\overrightarrow{a}$共線,且$\overrightarrow{a}$=(2,-1,2),
設$\overrightarrow{z}$=λ$\overrightarrow{a}$=(2λ,-λ,2λ),
由$\overrightarrow{a}$•$\overrightarrow{z}$=-18,
得2×2λ-1×(-λ)+2×2λ=-18,
解得λ=-2,
所以$\overrightarrow{z}$=(-4,2,-4).
故答案為:(-4,2,-4).

點評 本題考查了空間向量的共線定理和數(shù)量積運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在2015年全運會上兩名射擊運動員甲、乙在比賽中打出如下成績:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲、乙兩人的成績;并根據(jù)莖葉圖估計他們的中位數(shù);
(2)已知甲、乙兩人成績的方差分別為1.69與0.81,分別計算兩個樣本的平均數(shù)x,x和標準差S,S,并根據(jù)計算結(jié)果估計哪位運動員的成績比較好,哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.圓x2+y2+2x-6y+1=0關于直線ax-by+3=0(a>0,b>0)對稱,則$\frac{1}{a}$+$\frac{3}$的最小值是( 。
A.2$\sqrt{3}$B.6$\frac{2}{3}$C.4D.5$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.過拋物線$x=\frac{1}{4}{y^2}$的焦點F的直線交拋物線于A,B兩點,O是坐標原點,拋物線的準線與x軸交于點M,若|AF|=4,則△AMB的面積為(  )
A.$\frac{{5\sqrt{3}}}{3}$B.$\frac{{7\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,圓O和圓O′都經(jīng)過點A和點B,PQ切圓O于點P,交圓O′于Q,M,交AB的延長線于N.若PN=2,MN=1,則MQ等于( 。
A.$\frac{7}{2}$B.3C.$\sqrt{10}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知復數(shù)z=1+ai(a∈R,a>0),且|z|=2,則復數(shù)z的虛部為( 。
A.$\sqrt{3}$B.1C.$\sqrt{3}$iD.i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義域為R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|},x≠1}\\{2,x=1}\end{array}\right.$,函數(shù)h(x)=f2(x)+bf(x)+c(其中b、c為常數(shù))有5個不同的零點x1,x2,x3,x4,x5,下列命題不正確的是( 。
A.4+2b+c=0B.b<0,c>0
C.(x1-1)(x2-1)(x3-1)(x4-1)(x5-1)=0D.x1+x2+x3+x4+x5=10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.有下列推理:
①A,B為定點,動點P滿足|PA|+|PB|=2a>|AB|,則P的軌跡為橢圓;
②由a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項和Sn的表達式;
③由圓x2+y2=r2的面積S=πr2,猜想出橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab;
④科學家利用魚的沉浮原理制造潛艇.以上推理不是歸納推理的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,在空間四邊形ABCD中,AD、CD、AB、BD的中點分別為E、F、G、H.已知AD=1,BC=$\sqrt{3}$,且,對角線$BD=\frac{{\sqrt{13}}}{2},AC=\frac{{\sqrt{3}}}{2}$.求證:△EFG為直角三角形.

查看答案和解析>>

同步練習冊答案