分析 (1)由正弦定理可將acosC=2bcosA-ccosA轉化為sinAcosC+cosAsinC=2sinBcosA⇒sin(A+C)=sinB=2sinBcosA⇒cosA=$\frac{1}{2}$即可
(2)在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA⇒8=(b-4)(b+2)=0,解得b=4,即可求得面積.
解答 解:(1)由正弦定理可將acosC=2bcosA-ccosA轉化為sinAcosC+cosAsinC=2sinBcosA,
⇒sin(A+C)=sinB=2sinBcosA⇒cosA=$\frac{1}{2}$
∵0<A<π∴A=$\frac{π}{3}$
(2)在△ABC中,由余弦定理得a2=b2+c2-2bc•cosA,即12=b2+4-2b→b2-2b
⇒8=(b-4)(b+2)=0,解得b=4,
s△ABC=$\frac{1}{2}bcsinA$=2$\sqrt{3}$
點評 本題考查了正余弦定理的應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1008}{1009}$ | B. | $-\frac{1009}{1008}$ | C. | 2017 | D. | $-\frac{1}{2017}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com