函數(shù)f(x)=||2x-1|-2x|的單調(diào)遞減區(qū)間為( 。
A、(-1,0)
B、(-∞,-1)
C、(-∞,0)
D、(-1,+∞)
考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過討論x的范圍,得出函數(shù)f(x)的分段函數(shù),結(jié)合指數(shù)函數(shù)的性質(zhì),得出函數(shù)的單調(diào)區(qū)間.
解答: 解:x≥0時(shí),f(x)=1,
x≤-1時(shí),f(x)=1-2x+1
-1<x<0時(shí),f(x)=2x+1-1,
∴f(x)在(-∞,-1]遞減,
故選:B.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性,考查了分段函數(shù),考查了分類討論思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式x6-(x+2)>(x+2)3-x2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高中二年級(jí)有253名學(xué)生,為了了解他們的視力情況,準(zhǔn)備按1:5的比例抽取一個(gè)樣本,試用系統(tǒng)抽樣方法進(jìn)行抽取,并寫出過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-x2+ax在區(qū)間[0,1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(0,3)
B、(1,3)
C、[1,3]
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
b-2x
a+2x
為奇函數(shù),試確定a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+2x+c的最小值為-1,且對(duì)任意x都有f(-1+x)=f(-1-x).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是減函數(shù),求實(shí)數(shù)λ的取值范圍;
(3)設(shè)函數(shù)h(x)=log2[p-f(x)],若此函數(shù)是定義域?yàn)榉强諗?shù)集,且不存在零點(diǎn),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2m=5n=100,則
1
m
+
1
n
等于(  )
A、2
B、
1
2
C、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足:x+y+3=xy,若對(duì)任意滿足條件的x,y:(x+y)2-a(x+y)+1≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(-3)2
4
+(2
10
27
)
-
2
3
-2π0=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案