在△ABC中,,則這個(gè)三角形的形狀一定是

A. 等邊三角形    B.等腰三角形     C. 直角三角形     D. 等腰直角三角形

 

【答案】

B

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、命題“在△ABC中,若∠C是直角,則∠B一定是銳角.”的證明過(guò)程如下:
假設(shè)∠B不是銳角,則∠B是直角或鈍角,即∠B≥90°,
所以∠A+∠B+∠C≥∠A+90°+90°>180°,
這與三角形的內(nèi)角和等于180°矛盾
所以上述假設(shè)不成立,所以∠B一定是銳角.
本題采用的證明方法是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,如果點(diǎn)A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長(zhǎng)依次是a、b、c,則a=b•cosC+c•cosb,類(lèi)比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=
S1cosα+S2cosβ+S3cosγ
S1cosα+S2cosβ+S3cosγ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在△ABC中,AB⊥AC,AD⊥BC,D為.垂足,則AB2=BD•BC,該結(jié)論稱(chēng)為射影定理.如圖乙,在三棱錐A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),類(lèi)比射影定理,探究S△ABC、S△BCO、S△BCD這三者之間滿(mǎn)足的關(guān)系是
S△ABC2=S△BCOS△BCD
S△ABC2=S△BCOS△BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,在△ABC中,記D、E、F分別為BC、CA、AB的中點(diǎn),則:①.AD、BE、CF相交于一點(diǎn);②.該點(diǎn)將對(duì)應(yīng)線(xiàn)段分成2:1兩部分;類(lèi)比這一結(jié)論,在四面體A-BCD中,記G1、G2、G3、G4分別為△BCD、△CDA、△DAB、△ABC的重心,則有結(jié)論:①
AG1、BG2、CG3、DG4交于一點(diǎn)
AG1、BG2、CG3、DG4交于一點(diǎn)
;②
該點(diǎn)將對(duì)應(yīng)線(xiàn)段分成3:1兩部分
該點(diǎn)將對(duì)應(yīng)線(xiàn)段分成3:1兩部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省高二第一次段考理科數(shù)學(xué)試卷 題型:填空題

以下命題正確的是                 

①在空間中,若四點(diǎn)不共面,則這四點(diǎn)中任何三點(diǎn)都不共線(xiàn)的逆命題是真命題。

是方程有實(shí)數(shù)解的充要條件。

③若函數(shù)的值域?yàn)槿w實(shí)數(shù),則有。

④在△ABC中,若tanAsin2B=tanBsin2A,則△ABC為等腰直角三角形

⑤在△ABC中,a、b、c分別是∠A、∠B、∠C所對(duì)邊,C=90°,則的取值范圍為

 

查看答案和解析>>

同步練習(xí)冊(cè)答案