已知數(shù)列中,,對任意的,、、成等比數(shù)列,公比為;、、成等差數(shù)列,公差為,且.
(1)寫出數(shù)列的前四項;
(2)設,求數(shù)列的通項公式;
(3)求數(shù)列的前項和.
(1)或;(2)或;(3)時,,時,.
解析試題分析:(1)求數(shù)列的前4項,相對較容易,由題意可得成等比數(shù)列,而,要求得,對應再求得;(2)要求,實質上就是求,我們應求出的遞推關系,從而求出通項,由題意,,而,這樣就有,于是關于的遞推關系就有了:,把它變形或用代入就可得到結論;(3)由(2)我們求出了,下面為了求,我們要把數(shù)列從前到后建立一個關系,分析已知,發(fā)現(xiàn),這樣就由而求出,于是,,得到數(shù)列的通項公式后,其前項和也就可求得了. 另外由于第(1)題中已知求出的數(shù)列的前4項(我們還可再求出接下來的一些項,增強想象),然后用猜想的方法猜測出其通項公式(),再數(shù)學歸納法證明之.
試題解析:(1)由題意得
,,或. 2分
故數(shù)列的前四項為或. 4分
(2)∵成公比為的等比數(shù)列,
成公比為的等比數(shù)列
∴,
又∵成等差數(shù)列,
∴.
得,, 6分
,
∴,,即.
∴ 數(shù)列數(shù)列為公差等差數(shù)列,且或. 8分
∴或. 10分
(3)當時,由(2)得.
,,
,
. 13分
當時,同理可得,. &nb
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列滿足.
(1)證明數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;
(2)若數(shù)列滿足.證明:數(shù)列是等差數(shù)列.
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等差數(shù)列{}的公差,,且,,成等比數(shù)列.
(1)求數(shù)列{}的公差及通項;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等比數(shù)列的各項均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)已知,記,
,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列是首項和公比均為的等比數(shù)列,設.
(1)求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等比數(shù)列中,已知.
(1)求數(shù)列的通項公式;
(2)若分別為等差數(shù)列的第3項和第5項,試求數(shù)列的通項公式及前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設等差數(shù)列{an}的前n項和為Sn,且S4=-62,S6=-75,求:
(1){an}的通項公式an及其前n項和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com