已知橢圓經(jīng)過點其離心率為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C相交于AB兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標(biāo)原點.求O到直線l的距離的最小值.

答案:
解析:

  解:(Ⅰ)由已知,,所以 ①  1分

  又點在橢圓上,所以 ②  2分

  由①②解之,得

  故橢圓的方程為  5分

  (Ⅱ)當(dāng)直線有斜率時,設(shè)時,

  則由

  消去得,  6分

  、邸 7分

  設(shè)A、B點的坐標(biāo)分別為,則:

    8分

  由于點在橢圓上,所以  9分

  從而,化簡得,經(jīng)檢驗滿足③式.

  又點到直線的距離為:

    10分

  當(dāng)且僅當(dāng)時等號成立

  當(dāng)直線無斜率時,由對稱性知,點一定在軸上,從而點為,直線,所以點到直線的距離為1

  所以點到直線的距離最小值為  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012屆云南省建水一中高三9月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)
已知橢圓 經(jīng)過點其離心率為
(1)求橢圓的方程
(2)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省聊城市高三上學(xué)期1月份模塊檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓 經(jīng)過點其離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三9月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

   已知橢圓 經(jīng)過點其離心率為

   (1)求橢圓的方程

(2)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線的距離的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題共14分)

已知橢圓 經(jīng)過點其離心率為.

   (Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓 經(jīng)過點其離心率為.

   (Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案