精英家教網 > 高中數學 > 題目詳情

已知a=(cosα,sinα),b=(cosβ,sinβ),則


  1. A.
    a⊥b
  2. B.
    a∥b
  3. C.
    (a+b)⊥(a-b)
  4. D.
    a與b的夾角為α+β
C
解:因為a=(cosα,sinα),b=(cosβ,sinβ),則(a+b)與(a-b)的數量積為0,說明了(a+b)⊥(a-b) 選C
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義平面向量之間的一種運算“⊙”如下:對任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),點N(x,y)滿足
ON
=a⊙b(其中O為坐標原點),則|
ON
|2
的最大值為( 。
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求證:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
與k
a
-
b
大小相等,求β-α(k≠0).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•朝陽區(qū)一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
a
|的值;
(Ⅱ)求證:
a
+
b
a
-
b
互相垂直;
(Ⅲ)設|
a
+
b
|=|
a
-
b
|,求β-α的值.

查看答案和解析>>

同步練習冊答案