若偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(x)的x的取值范圍是
 
考點:奇偶性與單調(diào)性的綜合
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則f(2x-1)<f(x)可化為|2x-1|<|x|,從而求解.
解答: 解:∵偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
又∵f(2x-1)<f(x),
∴|2x-1|<|x|,
∴(2x-1)2<x2,
∴(3x-1)(x-1)<0,
1
3
<x<1,
故答案為:
1
3
<x<1.
點評:本題考查了函數(shù)的奇偶性與單調(diào)性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某個四面體的棱長均為a,
(1)求該四面體外接球的體積;
(2)求該四面體內(nèi)切球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a+1
a
=5,則(
1
a
2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥面ABCD,E是PD上一點.
(1)求證:AC⊥BE.
(2)若PD=AD=1,且∠PCE的余弦值為
3
10
10
,求三棱錐E-PBC的體積.
(3)在(2)的條件下,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠ABC=45°,AC=2,BC=1,則sin∠BAC的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的半焦距是c,A,B分別是長軸、短軸的也端點,O為原點,若△ABO的面積是
3
c2,則這一橢圓的離心率是( 。
A、
1
2
B、
3
2
C、
2
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a>e2時,f(x)=|ln|x-1||+ex-a有
 
個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln x-x+
a-1
x

(1)若a=4,求f(x)的極值;
(2)若f(x)在定義域內(nèi)無極值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過(-1,5)且和圓(x-1)2+(y-2)2=4相切的直線方程是
 

查看答案和解析>>

同步練習(xí)冊答案