1.已知圓O:x2+y2=1.圓O'與圓O關(guān)于直線x+y-2=0對(duì)稱,則圓O'的方程是(x-2)2+(y-2)2=1.

分析 求出(0,0)關(guān)于直線x+y-2=0對(duì)稱點(diǎn)的坐標(biāo),即可得出結(jié)論.

解答 解:設(shè)(0,0)關(guān)于直線x+y-2=0對(duì)稱點(diǎn)的坐標(biāo)為(a,b),則$\left\{\begin{array}{l}{\frac{a}=1}\\{\frac{a}{2}+\frac{2}-2=0}\end{array}\right.$,
∴a=b=2,
∴圓O'的方程是(x-2)2+(y-2)2=1,
故答案為(x-2)2+(y-2)2=1.

點(diǎn)評(píng) 本題考查圓的方程,考查點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的求法,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=|lnx|,$g(x)=\left\{\begin{array}{l}0,0<x≤1\\|{x^2}-4|-2,x>1\end{array}\right.$若方程|f(x)+g(x)|=a有4個(gè)實(shí)根,則a的取值范圍是(  )
A.(0,1]B.(0,2-ln2)C.[1,2-ln2]D.[1,2-ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.角α的終邊經(jīng)過(guò)的一點(diǎn)P的坐標(biāo)是(-$\sqrt{3}$,a),則“|a|=1”的充要條件是( 。
A.$sinα=\frac{1}{2}$B.$cosα=-\frac{{\sqrt{3}}}{2}$C.$tanα=-\frac{{\sqrt{3}}}{3}$D.$|PO|=\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出40個(gè)數(shù):1,2,4,7,11,16,…,要計(jì)算這40個(gè)數(shù)的和,如圖給出了該問(wèn)題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( 。
A.i≤40?;p=p+i-1B.i≤41?;p=p+i-1C.i≤41?;p=p+iD.i≤40?;p=p+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo)x)、推理(能力指標(biāo)y)、建模(能力指標(biāo)z)的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)w=x+y+z的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng);若w≥7,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若5≤w≤6,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若3≤w≤4,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問(wèn)了某校10名學(xué)生,得到如下結(jié)果:
學(xué)生編號(hào)A1A2A3A4A5A6A7A8A9A10
(x,y,z)(2,2,3)(3,2,3)(3,3,3)(1,2,2)(2,3,2)(2,3,3)(2,2,2)(2,3,3)(2,1,1)(2,2,2)
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為a,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為b,記隨機(jī)變量X=a-b,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{0.2}x,x∈(1,+∞)}\\{2-2x,x∈(-∞,1]}\end{array}\right.$,若a=f(20.3),b=f(log0.32),c=f(log32),則a、b、c的大小關(guān)系是( 。
A.b>c>aB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)f(x)=$\frac{{e}^{x}-1}{x}$-ax-b(a、b∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+2y+4=0,求a、b的值;
(2)當(dāng)b=1時(shí),若總存在負(fù)實(shí)數(shù)m,使得當(dāng)x∈(m,0)時(shí),f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.我國(guó)古代算書(shū)《孫子算經(jīng)》上有個(gè)有趣的問(wèn)題“出門望九堤”:今有出門重九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雛,雛有九毛,毛有九色,問(wèn)各幾何?現(xiàn)在我們用右圖所示的程序框圖來(lái)解決這個(gè)問(wèn)題,如果要使輸出的結(jié)果為禽的數(shù)目,則在該框圖中的判斷框中應(yīng)該填入的條件是(  )
A.S>10000?B.S<10000?C.n≥5D.n≤6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),按逆時(shí)針?lè)较蜓刂荛L(zhǎng)為1的平面圖形運(yùn)動(dòng)一周,A,P兩點(diǎn)間的距離y與動(dòng)點(diǎn)P所走過(guò)的路程x的關(guān)系如圖所示,那么動(dòng)點(diǎn)P所走的圖形可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案