(2010屆棗莊市第一次調(diào)研)
已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x、y都有f(x+y) =f(x)+f(y)-1,且當(dāng)x>0 時(shí),f(x)>1.
(1)求證:函數(shù)f(x)在R上是增函數(shù);
(2)若關(guān)于x的不等式的解集為{x|-3<x<2=,求f(2009)的值;
(3)在(2)的條件下,設(shè),若數(shù)列從第k項(xiàng)開始的連續(xù)20項(xiàng) 之和等于102,求k的值.
(1)證明:設(shè)x1>x2,則x1-x2>0,從而f(x1-x2)>1,即f(x1-x2)-1>0. ………2分
,
故f(x)在R上是增函數(shù).…4分
(2)設(shè)2 =f(b),于是不等式為.
則,即.………6分
∵不等式f(x2 -ax +5a) <2的解集為{x|-3<x<2},
∴方程x2-ax+5a-b=0的兩根為-3和2,
于是,解得∴f(1)=2. ………8分
在已知等式中令x=n,y=1,得f(n+1)-f(n) =1.
所以{f(n)}是首項(xiàng)為2,公差為1的等差數(shù)列.
f(n)=2+(n-1)×1=n+1,故f(2009)=2010. ………10分
(3) .
設(shè)從第k項(xiàng)開始的連續(xù)20項(xiàng)之和為Tk,則.
當(dāng)k≥13時(shí),ak=|k-13|=k-13,Tk≥T13=0+1+2+3+…+19=190>102. (11分)
當(dāng)k<13時(shí),ak=|k-13|=13-k.
Tk=(13-k)+(12一k)+…+1+0+1+…+(k+6)=k2一7k+112.
令kk+112=102,解得k=2或k=5. ………14分
(注:當(dāng)k≥13時(shí),ak=|k一13|=k一13,令,無正整數(shù)解.得11分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com