設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-15,a3a5=-18,則當(dāng)Sn取最小值時(shí)n等于(  ).
A.9B.8C.7D.6
B
a3a5=-18得a4=-9,又a1=-15,所以d=2,所以an=-15+2(n-1)=2n-17,由2n-17≤0得n≤8.5,故當(dāng)Sn取最小值時(shí)n等于8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和為,數(shù)列滿足:
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;(3)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,a10<0,a11>0,且a11>|a10|,則{an}的前n項(xiàng)和Sn中最大的負(fù)數(shù)為前______項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面是關(guān)于公差d>0的等差數(shù)列{an}的四個(gè)命題:
p1:數(shù)列{an}是遞增數(shù)列;p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列是遞增數(shù)列;p4:數(shù)列{an+3nd}是遞增數(shù)列.
其中的真命題為(  ).
A.p1,p2B.p3,p4
C.p2,p3D.p1p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

Sn是等差數(shù)列{an}的前n項(xiàng)和,且S8S3=10,則S11的值為(  ).
A.12 B.18 C.22D.44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足:當(dāng))時(shí),,是數(shù)列 的前項(xiàng)和,定義集合的整數(shù)倍,,且,表示集合中元素的個(gè)數(shù),則     ,       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知Sn是數(shù)列{an}的前n項(xiàng)和,且anSn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bnTnbn+1bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對(duì)于任意的正整數(shù)n,有Tn恒成立?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)等差數(shù)列的公差,若的等比中項(xiàng),則=(    )
A.3或6B.3 或9C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案