【題目】已知復(fù)數(shù) z a bi ,其中 a .b 為實數(shù),i 為虛數(shù)單位, 為 z 的共軛復(fù)數(shù),且存在非零實數(shù) t ,使成立.
(1)求 2a b 的值;
(2)若| z 2 | 5,求實數(shù) a 的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,若a1=﹣2,an+1=an+n2n,則an=( 。
A. (n﹣2)2nB. 1﹣C. (1﹣)D. (1﹣)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對 n N ,設(shè)拋物線 y2 2(2n 1) x ,過 P 2n, 0 任作直線 l 與拋物線交與 An, Bn兩點,則數(shù)列的前 n 項和為_____;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓 C : ,稱圓心在原點,半徑為的圓是橢圓 C 的“伴隨圓”.若橢圓 C 的一個焦點為 F1(, 0) ,其短軸上的一個端點到 F1 的距離為
(1)求橢圓 C 的方程及其“伴隨圓”方程;
(2)若傾斜角 45°的直線 l 與橢圓 C 只有一個公共點,且與橢圓 C 的伴隨圓相交于 M .N 兩點,求弦 MN 的的長;
(3)點 P 是橢圓 C 的伴隨圓上一個動點,過點 P 作直線 l1、l2,使得 l1、l2與橢圓 C 都只有一個公共點,判斷l1、l2的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球、兩個“”號球、三個“”號球、四個無號球,箱內(nèi)有五個“”號球、五個“”號球,每次摸獎后放回,消費額滿元有一次箱內(nèi)摸獎機會,消費額滿元有一次箱內(nèi)摸獎機會,摸得有數(shù)字的球則中獎,“”號球獎元、“”號球獎元、“”號球獎元,摸得無號球則沒有獎金.
(Ⅰ)經(jīng)統(tǒng)計,消費額服從正態(tài)分布,某天有為顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù);
(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎機會,求其中中獎人數(shù)的分布列;
(Ⅲ)某顧客消費額為元,有兩種摸獎方法,方法一:三次箱內(nèi)摸獎機會;方法二:一次箱內(nèi)摸獎機會,請問:這位顧客選哪一種方法所得獎金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一塊直角三角形板置于平面直角坐標(biāo)系中,已知,點是三角板內(nèi)一點,現(xiàn)因三角板中,陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過點的任一直線將三角板鋸成,設(shè)直線的斜率為.
(1)用表示出直線的方程,并求出點的坐標(biāo);
(2)求出的取值范圍及其所對應(yīng)的傾斜角的范圍;
(3)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,且與定直線相切.
(1)求動圓圓心的軌跡的方程;
(2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com