【題目】如圖所示的四邊形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)
(1)若 且﹣2≤x<1,求函數(shù)y=f(x)的值域;
(2)若 且 ,求x,y的值及四邊形ABCD的面積.
【答案】
(1)解:∵ ,
∴ .
∵ ,∴x(2﹣y)﹣y(﹣x﹣4)=0,
∴ ,∴ ,
又∵﹣2≤x<1,∴y∈(﹣ ,1],
即函數(shù)y=f(x)的值域?yàn)?
(2)解:∵ ,
由 ,可得 =0,∴(x+6)(x﹣2)+(y+1)(y﹣3)=0,
又 ,由(1)得x+2y=0,聯(lián)立可得: .
若x=﹣6,y=3,則 =(0,4), =(﹣8,0),∴S四邊形ABCD= | || |=16,
若x=2,y=﹣1,則 =(8,0), =(0,﹣4),∴S四邊形ABCD= | || |=16,
綜上:四邊形ABCD的面積為16.
【解析】(1)由已知運(yùn)用向量的坐標(biāo)運(yùn)算根據(jù)兩個(gè)向量共線得到x、y的函數(shù)關(guān)系式,由已知條件即可求出函數(shù)的值域。(2)根據(jù)向量共線以及向量垂直結(jié)合(1)可得到關(guān)于x、y的方程,再分情況利用對角線垂直的條件求出四邊形的面積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在 的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開式中所有的有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意實(shí)數(shù)均有,其中常數(shù)為負(fù)數(shù),且在區(qū)間上有表達(dá)式.
(1)寫出在上的表達(dá)式,并寫出函數(shù)在上的單調(diào)區(qū)間(不用過程,直接寫出即可);
(2)求出在上的最小值與最大值,并求出相應(yīng)的自變量的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績概率為 ,第二、第三門課程取得優(yōu)秀成績的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績相互獨(dú)立,記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為
ξ | 0 | 1 | 2 | 3 |
p | x | y |
(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績的概率及求p,q的值;
(Ⅱ)求該生取得優(yōu)秀成績課程門數(shù)的數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),則下列結(jié)論正確的是__________.(寫出所有正確的編號)①的最小正周期為;②在區(qū)間上單調(diào)遞增;③取得最大值的的集合為 ④將的圖像向左平移個(gè)單位,得到一個(gè)奇函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中, , , ,點(diǎn)是線段上的動(dòng)點(diǎn).
(1)當(dāng)點(diǎn)是的中點(diǎn)時(shí),求證: 平面;
(2)線段上是否存在點(diǎn),使得平面平面?若存在,試求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李莊村某社區(qū)電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費(fèi)2元,月用電不超過30度,每度0.4元,超過30度時(shí),超過部分按每度0.5元.
方案二:不收管理費(fèi),每度0.48元.
(1)求方案一收費(fèi)元與用電量(度)間的函數(shù)關(guān)系;
(2)小李家九月份按方案一交費(fèi)34元,問小李家該月用電多少度?
(3)小李家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 : 的離心率為 ,且過點(diǎn) , , 是橢圓 上異于長軸端點(diǎn)的兩點(diǎn).
(1)求橢圓 的方程;
(2)已知直線 : ,且 ,垂足為 , ,垂足為 ,若 ,且 的面積是 面積的5倍,求 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在上的奇函數(shù).
(Ⅰ)求的解析式;
(Ⅱ)判斷在定義域上的單調(diào)性,并用函數(shù)單調(diào)性定義給予證明;
(Ⅲ)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com