【題目】如圖,在正方體中,,,分別是,,的中點(diǎn).
(1)求異面直線與所成角的大。
(2)棱上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,請說明理由.
【答案】(1);(2)存在,此時(shí).
【解析】
(1)連接,,.利用平移的方法找到異面直線與所成角,然后求解其大小即可;
(2)在棱上取點(diǎn),使得,延長,交于,連交于,推導(dǎo)出四邊形為平行四邊形,由此推導(dǎo)出平面.
(1)連接,,.
因?yàn)?/span>,分別是,的中點(diǎn),所以.
又因?yàn)?/span>.所以(或其補(bǔ)角)為異面直線與所成角.
在中,因?yàn)?/span>,
所以異面直線與所成角的大小為.
(2)在棱上取點(diǎn),使得,
則平面.
證明如下:延長,交于,
連交于.
因?yàn)?/span>,為中點(diǎn),所以為中點(diǎn).
因?yàn)?/span>,所以,且.
因?yàn)?/span>,為中點(diǎn),所以,且,
即四邊形為平行四邊形,
所以,即.
又平面,平面,
所以平面.此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處取得極值,求的值,并求函數(shù)在處的切線方程;
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為“喜愛打籃球與性別有關(guān)”?說明你的理由.
參考公式:獨(dú)立性檢測中,隨機(jī)變量,
其中為樣本容量
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求的單調(diào)增區(qū)間;
(2)令.
①當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
②當(dāng)時(shí),若的解集為,且中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國詩詞大會(huì)的播出引發(fā)了全民讀書熱,某學(xué)校語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),低于85分且不低于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛好者”的稱號(hào).根據(jù)該次比賽的成績按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為( 。
A. 6B. 5C. 4D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為豐富居民節(jié)日活動(dòng),組織了“迎新春”象棋大賽,已知報(bào)名的選手情況統(tǒng)計(jì)如下表:
組別 | 男 | 女 | 總計(jì) |
中年組 | 91 | ||
老年組 | 16 |
已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人,若對中年組和老年組分別利用分層抽樣的方法抽取部分報(bào)名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.
(1)求表格中的數(shù)據(jù);
(2)若從選出的中年組的選手中隨機(jī)抽取兩名進(jìn)行比賽,求至少有一名女性選手的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù)
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在實(shí)數(shù)集上的函數(shù)是奇函數(shù),是偶函數(shù),且.
(1)求、的解析式;
(2)命題命題,若為真,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上的一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線的長;
(2)PC和NC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com