精英家教網 > 高中數學 > 題目詳情
1、如圖,CD是⊙O的直徑,AE切⊙O于點B,連接DB,若∠D=20°,則∠DBE的大小為(  )
分析:本題考察的知識有,弦切角定理,圓周角定理,我們要根據這些定理分析已知角與未知角之間的關系,進行求解.由于已知中已知角∠D=20°,且CD為直徑,故∠CBD=90°,∠DBE+∠CBD+∠ABC=180°由此得到已知角和未知角的關系,從而求解.
解答:解:由弦切角定理可得:
∠ABC=∠D=20°
又∵CD為直徑
∴∠CBD=90°
∴∠DBE=180°-∠CBD-∠ABC=70°
故選D
點評:要求一個角的大小,先要分析未知角與已知角的關系,然后再選擇合適的性質來進行計算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為
CD
,
CD
DE
,
DE
的中點,O1
O
1
,O2,
O
2
分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
O
1
,A,O2,B
四點共面;
(2)設G為A A′中點,延長A
O
1
到H′,使得
O
1
H=A
O
1
.證明:B
O
2
⊥平面HBG

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,成都市準備在南湖的一側修建一條直路EF,另一側修建一條觀光大道,大道的前一部分為曲線段FBC,該曲線段是函數y=Asin(ωx+
3
),(A>0,ω>0),x∈[-4,0]
時的圖象,且圖象的最高點為B(-1,3),大道的中間部分為長1.5km的直線段CD,且CD∥EF.大道的后一部分是以O為圓心的一段圓弧DE.
(1)求曲線段FBC的解析式,并求∠DOE的大;
(2)若南湖管理處要在圓弧大道所對應的扇形DOE區(qū)域內修建如圖所示的水上樂園PQMN,問點P落在圓弧DE上何處時,水上樂園的面積最大?

查看答案和解析>>

科目:高中數學 來源:四川省眉山市09-10學年高二下學期期末質量測試數學試題(文科) 題型:解答題

(本小題滿分12分)如圖,正方形A1BA2C的邊長為4,D是A1B的中點,E是BA2上的點,將△A1DC及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且二面角A-DC-E為直二面角。w_w w. k#s5_u.c o*m

(1)求證:CD⊥DE;   (2)求AE與面DEC所成角的正弦.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為








CD
,








CD
,








DE
,








DE
的中點,O1,
O′1
,O2,
O′2
分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
O′1
,A,O2,B
四點共面;
(2)設G為A A′中點,延長A
O′1
到H′,使得
O′1
H=A
O′1
.證明:B
O′2
⊥平面HBG
精英家教網

查看答案和解析>>

科目:高中數學 來源:陜西省寶雞中學2010屆高三適應性訓練(數學理) 題型:填空題

 A.(參數方程與極坐標)

直線與直線的夾角大小為         

 

B.(不等式選講)要使關于x的不等式在實數

范圍內有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習冊答案