8.網(wǎng)絡(luò)用語“車珠子”,通常是指將一塊原料木頭通過加工打磨,變成球狀珠子的過程,某同學(xué)有一圓錐狀的木塊,想把它“車成珠子”,經(jīng)測量,該圓錐狀木塊的底面直徑為12cm,體積為96πcm3,假設(shè)條件理想,他能成功,則該珠子的體積最大值是( 。
A.36πcm3B.12πcm3C.9πcm3D.72πcm3

分析 求出圓錐的高與母線長,利用等面積,求出軸截面的內(nèi)切球的半徑,即可得出結(jié)論.

解答 解:設(shè)圓錐的高為hcm,則$\frac{1}{3}π•{6}^{2}•h=96$π∴h=8,
∴圓錐的母線長為10cm,
設(shè)軸截面的內(nèi)切球的半徑為r,則$\frac{1}{2}×12×8=\frac{1}{2}×(10+10+12)r$,
∴r=3cm,
∴該珠子的體積最大值是$\frac{4}{3}π•{3}^{3}$=36πcm3
故選A.

點(diǎn)評(píng) 本題考查球的體積,考查圓錐體積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x∈Z|x<3},N={x|1≤ex≤e},則M∩N等于( 。
A.B.{0}C.[0,1]D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|=5,則|$\overrightarrow$|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知a=$\frac{1}{4}$log23,b=$\frac{1}{2}$,c=$\frac{1}{2}$log53,則( 。
A.c<a<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P1(2,-1),P2(0,5)且點(diǎn)P在P1P2的延長線上,$|{\overrightarrow{{P_1}P}}|=2|{\overrightarrow{P{P_2}}}|$,則點(diǎn)P的坐標(biāo)為(-2,11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,直線y=x-2$\sqrt{2}$與圓x2+y2=2an+2交于An,Bn(n∈N*)兩點(diǎn),且$S{\;}_n=\frac{1}{4}{|{{A_n}{B_n}}|^2}$.若a1+2a2+3a3+…+nan<λan2+2對(duì)任意n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是(  )
A.(0,+∞)B.$(\frac{1}{2},+∞)$C.[0,+∞)D.$[\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}是首項(xiàng)為1的單調(diào)遞增的等比數(shù)列,且滿足a3,$\frac{5}{3}$a4,a5成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{$\frac{2n-1}{{a}_{n}}$}的前n項(xiàng)和Sn,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2lnx-ax+a(a∈R).
(1)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線2x+y-1=0垂直,求a的值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x>0,lnx≤x-1”的否定是( 。
A.?x0>0,lnx0≤x0-1B.?x0>0,lnx0>x0-1C.?x0<0,lnx0<x0-1D.?x0>0,lnx0≥x0-1

查看答案和解析>>

同步練習(xí)冊(cè)答案