已知雙曲線
x2
4
+
y2
k
=1的離心率e<2,則k的取值范圍是( 。
A、k<0或k>3
B、-3<k<0
C、-12<k<0
D、-8<k<3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:直接利用雙曲線的方程,求出離心率,利用已知條件求解即可.
解答: 解:雙曲線
x2
4
+
y2
k
=1可知k<0,并且a=2,c=
4-k
,雙曲線的離心率為:
4-k
2
,
∵e<2,
4-k
2
<2
,
解得-12<k≤4,
綜上-12<k<0.
故選:C.
點(diǎn)評(píng):本題考查雙曲線的基本性質(zhì)的應(yīng)用,注意雙曲線方程的判斷,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=22x-
5
2
•2x+1+a,當(dāng)x∈[0,3]時(shí),f(x)的最大值和最小是之和為
23
4

(1)求實(shí)數(shù)a的值;
(2)若x∈[0,3]時(shí),f(x)-m2x+6≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ex•sin3x的導(dǎo)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=2,對(duì)于任意m、n∈N+,都有am+n=am+an+2,Sn是{an}的前n項(xiàng)和,則
lim
n→∞
nan
Sn+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個(gè)單位長(zhǎng)度,所得函數(shù)y=f(x)為偶函數(shù)時(shí),則φ的一個(gè)值是( 。
A、
π
2
B、
8
C、
π
4
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

MC⊥菱形ABCD所在平面,那么MA與BD的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
sin(2x-
π
6
)+1.
(1)求f(
π
3
)的值和函數(shù)f(x)的周期;
(2)求函數(shù)f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校500名學(xué)生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,為了研究血型與色弱的關(guān)系,需從中抽取一個(gè)容量為20的樣本.按照分層抽樣方法抽取樣本,各種血型的人分別抽多少?( 。
A、18B、19C、20D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ξ~N(0,s2),若P(ξ>2)=0.023,則P(-2≤ξ≤2)=( 。
A、0.477
B、0.628
C、0.954
D、0.977

查看答案和解析>>

同步練習(xí)冊(cè)答案