已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.
;⑵

試題分析:⑴兩焦點間距離為,由焦點坐標可得值,橢圓長軸長為,由長軸長為,得,由橢圓中,可得值,可求得橢圓的標準方程;⑵由條件可得直線的方程為,設,將直線方程與橢圓方程聯(lián)立方程組,可化為,則可得,由弦長公式,可得
解:⑴由,長軸長為6 ,
得:所以
∴橢圓方程為
⑵設,由⑴可知橢圓方程為①,
∵直線AB的方程為
把②代入①得化簡并整理得,
 
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓G:過點,,C、D在該橢圓上,直線CD過原點O,且在線段AB的右下側.
(1)求橢圓G的方程;
(2)求四邊形ABCD 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的焦點在軸上, 分別是橢圓的左、右焦點,點是橢圓在第一象限內的點,直線軸于點
(1)當時,
(1)若橢圓的離心率為,求橢圓的方程;
(2)當點P在直線上時,求直線的夾角;
(2) 當時,若總有,猜想:當變化時,點是否在某定直線上,若是寫出該直線方程(不必求解過程).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

矩形ABCD的四個頂點的坐標分別為A(-2,1),B(2,1),C(2,-1),D(-2,-1),過原點且互相垂直的兩條直線分別與矩形的邊相交于E、F、G、H四點,則四邊形EGFH的面積的最小值為______,最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(1,0),B (2,0) .動點M滿足
(1)求點M的軌跡C;
(2)若過點B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓x2+ky2=1的一個焦點是(0,2),則k的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F是橢圓C的一個焦點,B是短軸的一個端點,線段BF的延長線交C于點D,且=2,則C的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率是,則的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

同步練習冊答案