分析 (1)利用向量坐標(biāo)運(yùn)算,求出f(x)的表達(dá)式并化簡(jiǎn),利用T=$\frac{2π}{ω}$求出T,再由函數(shù)單調(diào)性求出最大值;
(2)利用正弦型函數(shù)單調(diào)性,整體代入求出其單調(diào)遞增區(qū)間;
(3)畫(huà)出其一個(gè)周期函數(shù)圖象.
解答 解:(1)由題意得:
f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$cos4x+sin4x=2($\frac{\sqrt{3}}{2}$cos4x+$\frac{1}{2}$sin4x)=2sin(4x+$\frac{π}{3}$),
所以T=$\frac{2π}{ω}$=$\frac{π}{2}$,
f(x)max=2;
(2)因?yàn)楫?dāng)$-\frac{π}{2}+2kπ≤$4x+$\frac{π}{3}$$≤\frac{π}{2}+2kπ$(k∈Z)即$-\frac{5π}{24}+\frac{kπ}{2}≤x≤\frac{π}{24}+\frac{kπ}{2}$(k∈Z)時(shí),y=f(x)單調(diào)增,
所以函數(shù)的遞增區(qū)間為[$-\frac{5π}{24}+\frac{kπ}{2}$,$\frac{π}{24}+\frac{kπ}{2}$](k∈Z);
(3)函數(shù)圖象如下:
點(diǎn)評(píng) (1)本題主要考察向量坐標(biāo)運(yùn)算和輔助角公式,難度中檔;(2)本題解題關(guān)鍵是利用整體代入求出x的取值范圍,屬于三角函數(shù)常見(jiàn)題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 4 | C. | 2 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{e}$ | B. | $\frac{1}{2}$ | C. | $\root{4e}{e}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com