14.扶余市為“市中學(xué)生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于80分的有參賽資格,80分以下(不包括80分)的則被淘汰.若現(xiàn)有500人參加測試,學(xué)生成績的頻率分布直方圖如圖:
(1)求獲得參賽資格的人數(shù);
(2)根據(jù)頻率分布直方圖,估算這500名學(xué)生測試的平均成績.

分析 (1)成績大于或等于8(0分)的具有參賽資格,則參賽人數(shù)=頻率×總?cè)藬?shù)(500人),根據(jù)頻率分布直方圖可知,參賽的頻率為:0.010×10+0.005×10=0.15代入上式,得到所求人數(shù);
(2)在頻率分布直方圖中,平均數(shù)為每個矩形中點橫坐標(biāo)與矩形面積的和.

解答 解:(Ⅰ)(0.005+0.010)×10×500=75(人)
(Ⅱ)55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67.

點評 本題考查了頻率分布直方圖的性質(zhì)及其應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在回歸分析中,解釋變量、隨機誤差和預(yù)報變量的關(guān)系是( 。
A.隨機誤差由解釋變量和預(yù)報變量共同確定
B.預(yù)報變量只由解釋變量確定
C.預(yù)報變量由解釋變量和隨機誤差共同確定
D.隨機誤差只由預(yù)報變量確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=cos2x-2sinxcosx-sin2x,
(1)求f(x)的周期和單調(diào)增區(qū)間;
(2)若f(x)圖象向左平移$\frac{π}{8}$得到函數(shù)g(x)的圖象,求g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知三棱錐S-ABC外接球的表面積為32π,∠ABC=90°,三棱錐S-ABC的三視圖如圖所示,則其側(cè)視圖的面積的最大值為(  )
A.4B.$4\sqrt{2}$C.8D.$4\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.圓C1:(x-1)2+(y-2)2=1,圓C2:(x-2)2+(y-5)2=9,則這兩圓公切線的條數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)列{an}的前n項和為Sn,已知2Sn=3n+3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足an•bn=log3an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|-2≤x≤4},B={x|-m+1≤x≤2m-1}.
(1)若m=2,求A∪B,A∩(∁RB);
(2)若 B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三棱錐P-ABC中,△ABC為等邊三角形,邊長為$\sqrt{3}$,PA⊥面ABC,PA=2$\sqrt{3}$,則此三棱錐的外接球的表面積為( 。
A.$\frac{16}{3}π$B.$4\sqrt{3}π$C.$\frac{32π}{3}$D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中,真命題是( 。
A.“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.“p∧q為真”是“p∨q為真”的必要不充分條件
C.“若am2≤bm2,則a≤b”的否命題為真
D.?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案