【題目】已知函數(shù),.

1)若曲線在點處有相同的切線,求函數(shù)的極值;

2)若時,不等式為自然對數(shù)的底數(shù),)上恒成立,求實數(shù)的取值范圍.

【答案】1的極大值,極小值為;(2.

【解析】

1)利用導(dǎo)數(shù)的幾何意義求得,再對函數(shù)求導(dǎo),解導(dǎo)數(shù)不等式求得單調(diào)區(qū)間,從而求得函數(shù)的極值;

2)設(shè),定義域為,要使上恒成立,只需上恒成立;對5種情況討論,研究函數(shù)的最小值,從而求得的范圍.

1,,,

由題意知,∴

,∴,

,

時,,時,,

上是增函數(shù),在上是減函數(shù),在上是增函數(shù),

的極大值,極小值為.

2)設(shè),定義域為,

要使上恒成立,只需上恒成立,

因為,

由于,所以由,即,可得,

①當(dāng),即,易知,令,

解得.不滿足條件;

②當(dāng),即時,則必須,由①知,不滿足條件;

③當(dāng),即時,則必須,解得.不滿足條件.

④當(dāng),即時,則必須

,解得,

設(shè),則,

可知在區(qū)間上單調(diào)遞增,所以,所以不滿足條件;

⑤當(dāng),即時,則必須,解得,而

所以.

綜上所述的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,且,.

(1)求證:

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,長軸長是短軸長的2倍.

(1)求橢圓的方程;

(2)設(shè)直線經(jīng)過點且與橢圓相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明:為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過且斜率為的直線交于,兩點,

(1)求的方程;

(2)求過點,且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面為棱上一點(不與、重合),平面交棱于點.

1)求證:

2)若二面角的余弦值為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,拋物線上橫坐標(biāo)為的點到焦點的距離為.

(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;

(Ⅱ)過的直線交拋物線于不同的兩點,交直線于點,直線交直線于點. 是否存在這樣的直線,使得? 若不存在,請說明理由;若存在,求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點為頂點,直線為準(zhǔn)線的拋物線.以坐標(biāo)原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線與曲線的極坐標(biāo)方程:

(2)點是曲線上位于第一象限內(nèi)的一個動點,點是直線上位于第二象限內(nèi)的一個動點,且,請求出的最大值.

查看答案和解析>>

同步練習(xí)冊答案