已知以點為圓心的圓經(jīng)過點,且圓心在直線上.
(1)求圓的方程;
(2)設(shè)點在圓上,求的面積的最大值.
(1);(2)

試題分析:(1)圓心的垂直平分線和直線的交點,解之可得的坐標(biāo),由距離公式可得半徑,進(jìn)而可得所求圓的方程;(2)先求得間的距離,然后由點到直線的距離公式求得圓心到的距離,而距離的最大值為,從而由面積公式求得面積的最大值.
試題解析:(1)依題意所求圓的圓心的垂直平分線和直線的交點,
中點為斜率為1,
垂直平分線方程為,即 .
聯(lián)立解得 即圓心,半徑,
所求圓方程為 .
(2),
圓心到的距離為 ,
距離的最大值為,
所以面積的最大值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓經(jīng)過點
(Ⅰ)當(dāng)圓面積最小時,求圓的方程;
(Ⅱ)若圓的圓心在直線上,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x+b與曲線x=有且僅有一個公共點,則b的取值范圍是(  )
A.{b|b=±}
B.{b|-1<b≤1或b=-}
C.{b|-1≤b≤}
D.{b|-<b<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,以為圓心的圓與直線相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓,關(guān)于直線2ax+by+6=0對稱,則由點(a,b)向圓所作的切線長的最小值為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果圓上總存在兩個點到原點的距離為則實數(shù)a的取值范圍是
A.B.C.[-1,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓M過兩點A(1,-1),B(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動點,PA′、PB′是圓M的兩條切線,A′、B′為切點,求四邊形PA′MB′面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

到圓上的點的距離的最小值是(   )
A.1B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓(x+1)2+(y-2)2=4的圓心坐標(biāo)為              ;

查看答案和解析>>

同步練習(xí)冊答案